|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import datetime |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
model_name = "google/flan-t5-small" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) |
|
|
|
|
|
translator_en_hi = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-hi") |
|
tokenizer_en_hi = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi") |
|
|
|
translator_hi_en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-hi-en") |
|
tokenizer_hi_en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-hi-en") |
|
|
|
|
|
def translate(text, src_lang, tgt_lang): |
|
if src_lang == "English" and tgt_lang == "Hindi": |
|
inputs = tokenizer_en_hi(text, return_tensors="pt", padding=True, truncation=True) |
|
outputs = translator_en_hi.generate(**inputs) |
|
return tokenizer_en_hi.decode(outputs[0], skip_special_tokens=True) |
|
elif src_lang == "Hindi" and tgt_lang == "English": |
|
inputs = tokenizer_hi_en(text, return_tensors="pt", padding=True, truncation=True) |
|
outputs = translator_hi_en.generate(**inputs) |
|
return tokenizer_hi_en.decode(outputs[0], skip_special_tokens=True) |
|
else: |
|
return "Translation for this pair not supported yet!" |
|
|
|
|
|
def generate_complaint(issue): |
|
date = datetime.datetime.now().strftime("%d-%m-%Y") |
|
template = f""" |
|
[Your Name] |
|
[Your Address] |
|
{date} |
|
To Whom It May Concern, |
|
**Subject: Complaint Regarding {issue}** |
|
I am writing to formally lodge a complaint regarding {issue}. The incident occurred on [Date/Location]. The specific details are as follows: |
|
- Issue: {issue} |
|
- Evidence: [Provide Evidence] |
|
I kindly request you to take appropriate action as per the legal guidelines. |
|
Yours sincerely, |
|
[Your Name] |
|
""" |
|
return template.strip() |
|
|
|
|
|
def compute_loss(logits, labels): |
|
log_probs = F.log_softmax(logits, dim=-1) |
|
gathered_log_probs = log_probs.gather(dim=-1, index=labels.unsqueeze(-1)).squeeze(-1) |
|
loss = -gathered_log_probs.mean() |
|
return loss |
|
|
|
def handle_legal_query(query, language): |
|
if language != "English": |
|
query = translate(query, language, "English") |
|
|
|
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True) |
|
|
|
|
|
outputs = model.generate(**inputs, max_length=150) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
reward = 1.0 if "law" in response.lower() or "legal" in response.lower() else -1.0 |
|
|
|
|
|
labels = inputs['input_ids'] |
|
logits = model(**inputs).logits |
|
loss = compute_loss(logits, labels) |
|
|
|
|
|
optimizer.zero_grad() |
|
loss = loss * torch.tensor(reward, dtype=torch.float) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
if language != "English": |
|
response = translate(response, "English", language) |
|
|
|
return response |
|
|
|
|
|
def generate_email(issue): |
|
template = f""" |
|
Subject: Complaint Regarding {issue} |
|
Dear Sir/Madam, |
|
I am writing to formally lodge a complaint regarding {issue}. The incident occurred on [Date/Location]. The specific details are as follows: |
|
- Issue: {issue} |
|
- Evidence: [Provide Evidence] |
|
I kindly request you to take appropriate action as per the legal guidelines. |
|
Yours sincerely, |
|
[Your Name] |
|
""" |
|
return template.strip() |
|
|
|
|
|
with gr.Blocks(css=".container {width: 100%; max-width: 600px;}") as app: |
|
gr.Markdown("# AI Legal Assistant for Disabilities \n### Ask legal questions and generate complaints") |
|
|
|
with gr.Row(): |
|
query = gr.Textbox(label="Ask your legal question", placeholder="What are my rights as a disabled person?") |
|
lang = gr.Dropdown(["English", "Hindi"], label="Language", value="English") |
|
|
|
with gr.Row(): |
|
submit_btn = gr.Button("Get Legal Advice") |
|
output = gr.Textbox(label="Legal Advice", placeholder="Legal advice will appear here") |
|
|
|
with gr.Row(): |
|
issue = gr.Textbox(label="Describe your issue", placeholder="Facing discrimination at work...") |
|
generate_btn = gr.Button("Generate Complaint") |
|
complaint_output = gr.Textbox(label="Generated Complaint", placeholder="Complaint template will appear here") |
|
|
|
with gr.Row(): |
|
email_btn = gr.Button("Generate Email") |
|
email_output = gr.Textbox(label="Generated Email", placeholder="Generated email will appear here") |
|
|
|
submit_btn.click(handle_legal_query, inputs=[query, lang], outputs=output) |
|
generate_btn.click(generate_complaint, inputs=issue, outputs=complaint_output) |
|
email_btn.click(generate_email, inputs=issue, outputs=email_output) |
|
|
|
|
|
app.launch() |