Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import os | |
class LLMHandler: | |
def __init__(self): | |
self.client = InferenceClient( | |
model="mistralai/Mistral-7B-Instruct-v0.3", # Updated to v0.3 | |
token=os.getenv("HF_TOKEN") | |
) | |
def get_deadline_suggestion(self, task_description): | |
prompt = f"""You are a task management assistant. Analyze the task below and provide a realistic deadline suggestion. | |
Task Description: | |
"{task_description}" | |
Follow this format: | |
1. **Estimated Hours**: [X] | |
2. **Recommended Deadline**: [YYYY-MM-DD HH:MM] | |
3. **Priority**: [High/Medium/Low] | |
4. **Notes**: [Brief explanation] | |
Example: | |
1. **Estimated Hours**: 8 | |
2. **Recommended Deadline**: 2024-04-10 18:00 | |
3. **Priority**: High | |
4. **Notes**: Research papers typically take 5β7 days for 5000 words. | |
Now analyze the task and return only the structured output.""" | |
try: | |
response = self.client.chat.completions.create( | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=500, | |
temperature=0.3 | |
) | |
return response.choices[0].message.content | |
except Exception as e: | |
return f"LLM Error: {str(e)}. Please check HF_TOKEN or try again later." | |
# Singleton instance | |
llm = LLMHandler() |