Spaces:
Sleeping
Sleeping
Update model_handler.py
Browse files- model_handler.py +50 -3
model_handler.py
CHANGED
|
@@ -1,6 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from sentence_transformers.cross_encoder import CrossEncoder
|
| 2 |
import torch
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
class SimilarityModelHandler:
|
| 5 |
# HOLDING THE MODEL INSTANCE TO PREVENT RELOADING
|
| 6 |
SIMILARITY_MODEL_INSTANCE = None
|
|
@@ -14,9 +58,12 @@ class SimilarityModelHandler:
|
|
| 14 |
print(f"SERVICE IS RUNNING ON DEVICE: {device}")
|
| 15 |
|
| 16 |
# LOADING THE PRE-TRAINED CROSS-ENCODER MODEL
|
| 17 |
-
model_Name = 'cross-encoder/stsb-roberta-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
| 20 |
print("MODEL LOADED SUCCESSFULLY.")
|
| 21 |
|
| 22 |
def calculate_Similarity(self, text_One: str, text_Two: str) -> float:
|
|
|
|
| 1 |
+
# from sentence_transformers.cross_encoder import CrossEncoder
|
| 2 |
+
# import torch
|
| 3 |
+
|
| 4 |
+
# class SimilarityModelHandler:
|
| 5 |
+
# # HOLDING THE MODEL INSTANCE TO PREVENT RELOADING
|
| 6 |
+
# SIMILARITY_MODEL_INSTANCE = None
|
| 7 |
+
|
| 8 |
+
# def __init__(self):
|
| 9 |
+
# # CONSTRUCTOR: LOADING THE MODEL IF IT DOESN'T EXIST
|
| 10 |
+
# if not SimilarityModelHandler.SIMILARITY_MODEL_INSTANCE:
|
| 11 |
+
# print("INITIALIZING AND LOADING THE MODEL...")
|
| 12 |
+
# # CHECKING FOR GPU, FALLBACK TO CPU
|
| 13 |
+
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 14 |
+
# print(f"SERVICE IS RUNNING ON DEVICE: {device}")
|
| 15 |
+
|
| 16 |
+
# # LOADING THE PRE-TRAINED CROSS-ENCODER MODEL
|
| 17 |
+
# model_Name = 'cross-encoder/stsb-roberta-base'
|
| 18 |
+
# #cross-encoder/stsb-roberta-large'
|
| 19 |
+
# SimilarityModelHandler.SIMILARITY_MODEL_INSTANCE = CrossEncoder(model_Name, device=device)
|
| 20 |
+
# print("MODEL LOADED SUCCESSFULLY.")
|
| 21 |
+
|
| 22 |
+
# def calculate_Similarity(self, text_One: str, text_Two: str) -> float:
|
| 23 |
+
# """
|
| 24 |
+
# CALCULATES THE SIMILARITY SCORE BETWEEN TWO TEXTS.
|
| 25 |
+
# """
|
| 26 |
+
# # GETTING THE SCORE FROM THE MODEL( 0-1 )
|
| 27 |
+
# finalScore = self.SIMILARITY_MODEL_INSTANCE.predict([(text_One, text_Two)])
|
| 28 |
+
|
| 29 |
+
# # CONVERTING FROM NUMPY ARRAY TO A SIMPLE FLOAT
|
| 30 |
+
# return finalScore.item()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# # CREATING A SINGLE INSTANCE TO BE USED BY THE API
|
| 34 |
+
# MODEL_HANDLER = SimilarityModelHandler()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
import os
|
| 41 |
from sentence_transformers.cross_encoder import CrossEncoder
|
| 42 |
import torch
|
| 43 |
|
| 44 |
+
# SET CACHE DIRECTORY TO A WRITABLE LOCATION
|
| 45 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/transformers_cache'
|
| 46 |
+
os.environ['HF_HOME'] = '/tmp/hf_home'
|
| 47 |
+
|
| 48 |
class SimilarityModelHandler:
|
| 49 |
# HOLDING THE MODEL INSTANCE TO PREVENT RELOADING
|
| 50 |
SIMILARITY_MODEL_INSTANCE = None
|
|
|
|
| 58 |
print(f"SERVICE IS RUNNING ON DEVICE: {device}")
|
| 59 |
|
| 60 |
# LOADING THE PRE-TRAINED CROSS-ENCODER MODEL
|
| 61 |
+
model_Name = 'cross-encoder/stsb-roberta-large'
|
| 62 |
+
SimilarityModelHandler.SIMILARITY_MODEL_INSTANCE = CrossEncoder(
|
| 63 |
+
model_Name,
|
| 64 |
+
device=device,
|
| 65 |
+
cache_folder='/tmp/transformers_cache' # EXPLICIT CACHE FOLDER
|
| 66 |
+
)
|
| 67 |
print("MODEL LOADED SUCCESSFULLY.")
|
| 68 |
|
| 69 |
def calculate_Similarity(self, text_One: str, text_Two: str) -> float:
|