Spaces:
Sleeping
Sleeping
BeveledCube
commited on
Commit
•
8e724ea
1
Parent(s):
30e32ac
Added EOS toke stuff increased new token limit and added QOL features to frontent
Browse files- models/blenderbot.py +1 -1
- models/fast.py +1 -1
- models/gpt2.py +1 -1
- models/hermes.py +1 -1
- models/llama2.py +1 -1
- models/llama3.py +1 -1
- models/llamatiny.py +1 -1
- models/mamba.py +1 -1
- models/tinystories.py +7 -1
- templates/index.html +14 -4
models/blenderbot.py
CHANGED
@@ -23,6 +23,6 @@ def generate(input_text):
|
|
23 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
24 |
|
25 |
# Generate output using the model
|
26 |
-
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
|
27 |
|
28 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
23 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
24 |
|
25 |
# Generate output using the model
|
26 |
+
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
27 |
|
28 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/fast.py
CHANGED
@@ -11,6 +11,6 @@ def load():
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
-
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
+
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/gpt2.py
CHANGED
@@ -16,6 +16,6 @@ def generate(input_text):
|
|
16 |
attention_mask = tf.ones_like(input_ids)
|
17 |
|
18 |
# Generate output using the model
|
19 |
-
output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
|
20 |
|
21 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
16 |
attention_mask = tf.ones_like(input_ids)
|
17 |
|
18 |
# Generate output using the model
|
19 |
+
output_ids = model.generate(input_ids, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
20 |
|
21 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/hermes.py
CHANGED
@@ -13,6 +13,6 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
13 |
|
14 |
def generate(messages):
|
15 |
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
16 |
-
output_ids = model.generate(**gen_input, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100)
|
17 |
|
18 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
13 |
|
14 |
def generate(messages):
|
15 |
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
16 |
+
output_ids = model.generate(**gen_input, num_beams=5, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
17 |
|
18 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/llama2.py
CHANGED
@@ -11,6 +11,6 @@ def load():
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
-
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
+
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/llama3.py
CHANGED
@@ -11,6 +11,6 @@ def load():
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
-
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
+
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/llamatiny.py
CHANGED
@@ -11,6 +11,6 @@ def load():
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
-
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
+
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/mamba.py
CHANGED
@@ -11,6 +11,6 @@ def load():
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
-
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
+
output_ids = model.generate(input_ids, no_repeat_ngram_size=2, max_new_tokens=100, eos_token_id=tokenizer.eos_token_id)
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
models/tinystories.py
CHANGED
@@ -11,6 +11,12 @@ def load():
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
-
output_ids = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
11 |
|
12 |
def generate(input_text):
|
13 |
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
14 |
+
output_ids = model.generate(
|
15 |
+
input_ids,
|
16 |
+
no_repeat_ngram_size=2,
|
17 |
+
max_new_tokens=200,
|
18 |
+
eos_token_id=tokenizer.eos_token_id,
|
19 |
+
temperature=0.2
|
20 |
+
)
|
21 |
|
22 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
templates/index.html
CHANGED
@@ -74,12 +74,23 @@
|
|
74 |
const apiUrl = `https://beveledcube-bevelapi.hf.space/api`;
|
75 |
const sendPromptButton = document.getElementById("send-prompt");
|
76 |
const responseContainer = document.getElementById("responses");
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
console.log("Sending prompt")
|
80 |
|
81 |
const responseElement = document.createElement("div");
|
82 |
-
const requestData = { prompt:
|
|
|
83 |
|
84 |
responseElement.classList.add("response-container");
|
85 |
|
@@ -114,8 +125,7 @@
|
|
114 |
.catch(error => {
|
115 |
console.error("Error:", error.message);
|
116 |
});
|
117 |
-
|
118 |
-
});
|
119 |
|
120 |
function getValue(elementId) {
|
121 |
return document.getElementById(elementId).value;
|
|
|
74 |
const apiUrl = `https://beveledcube-bevelapi.hf.space/api`;
|
75 |
const sendPromptButton = document.getElementById("send-prompt");
|
76 |
const responseContainer = document.getElementById("responses");
|
77 |
+
let promptInput = document.getElementById("prompt")
|
78 |
+
|
79 |
+
sendPromptButton.addEventListener("click", () => sendPrompt());
|
80 |
+
promptInput.addEventListener("keydown", (event) => {
|
81 |
+
if (event.key === "Enter") {
|
82 |
+
// Prevent the default action if needed (e.g., form submission)
|
83 |
+
event.preventDefault();
|
84 |
+
sendPrompt()
|
85 |
+
}
|
86 |
+
});
|
87 |
|
88 |
+
function sendPrompt() {
|
89 |
console.log("Sending prompt")
|
90 |
|
91 |
const responseElement = document.createElement("div");
|
92 |
+
const requestData = { prompt: promptInput.value };
|
93 |
+
promptInput.value = "";
|
94 |
|
95 |
responseElement.classList.add("response-container");
|
96 |
|
|
|
125 |
.catch(error => {
|
126 |
console.error("Error:", error.message);
|
127 |
});
|
128 |
+
}
|
|
|
129 |
|
130 |
function getValue(elementId) {
|
131 |
return document.getElementById(elementId).value;
|