Spaces:
Sleeping
Sleeping
from transformers import GPT2Tokenizer, TFGPT2LMHeadModel | |
import tensorflow as tf | |
model_name = "gpt2" | |
def load(): | |
global model | |
global tokenizer | |
model = TFGPT2LMHeadModel.from_pretrained(model_name) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
def generate(input_text): | |
# Tokenize the input text | |
input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True) | |
# Generate output using the model | |
output_ids = model.generate(input_ids, num_beams=3, no_repeat_ngram_size=2, max_new_tokens=200, eos_token_id=tokenizer.eos_token_id) | |
return tokenizer.decode(output_ids[0], skip_special_tokens=True) |