Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.layers import ( | |
Conv2D, | |
MaxPool2D, | |
Dropout, | |
Conv2DTranspose, | |
concatenate, | |
) | |
import matplotlib.pyplot as plt | |
class EncoderBlock(tf.keras.layers.Layer): | |
def __init__(self, filters, rate=None, pooling=True, **kwargs): | |
super(EncoderBlock, self).__init__(**kwargs) | |
self.filters = filters | |
self.rate = rate | |
self.pooling = pooling | |
self.conv1 = Conv2D( | |
self.filters, | |
kernel_size=3, | |
strides=1, | |
padding="same", | |
activation="relu", | |
kernel_initializer="he_normal", | |
) | |
self.conv2 = Conv2D( | |
self.filters, | |
kernel_size=3, | |
strides=1, | |
padding="same", | |
activation="relu", | |
kernel_initializer="he_normal", | |
) | |
if self.pooling: | |
self.pool = MaxPool2D(pool_size=(2, 2)) | |
if self.rate is not None: | |
self.drop = Dropout(rate) | |
def call(self, inputs): | |
x = self.conv1(inputs) | |
if self.rate is not None: | |
x = self.drop(x) | |
x = self.conv2(x) | |
if self.pooling: | |
y = self.pool(x) | |
return y, x | |
else: | |
return x | |
def get_config(self): | |
base_config = super().get_config() | |
return { | |
**base_config, | |
"filters": self.filters, | |
"rate": self.rate, | |
"pooling": self.pooling, | |
} | |
class DecoderBlock(tf.keras.layers.Layer): | |
def __init__(self, filters, rate=None, axis=-1, **kwargs): | |
super(DecoderBlock, self).__init__(**kwargs) | |
self.filters = filters | |
self.rate = rate | |
self.axis = axis | |
self.convT = Conv2DTranspose( | |
self.filters, kernel_size=3, strides=2, padding="same" | |
) | |
self.conv1 = Conv2D( | |
self.filters, | |
kernel_size=3, | |
activation="relu", | |
kernel_initializer="he_normal", | |
padding="same", | |
) | |
if rate is not None: | |
self.drop = Dropout(self.rate) | |
self.conv2 = Conv2D( | |
self.filters, | |
kernel_size=3, | |
activation="relu", | |
kernel_initializer="he_normal", | |
padding="same", | |
) | |
def call(self, inputs): | |
X, short_X = inputs | |
ct = self.convT(X) | |
c_ = concatenate([ct, short_X], axis=self.axis) | |
x = self.conv1(c_) | |
if self.rate is not None: | |
x = self.drop(x) | |
y = self.conv2(x) | |
return y | |
def get_config(self): | |
base_config = super().get_config() | |
return { | |
**base_config, | |
"filters": self.filters, | |
"rate": self.rate, | |
"axis": self.axis, | |
} | |
# Load the model with custom layers | |
unet = tf.keras.models.load_model( | |
"final.h5", | |
custom_objects={ | |
"EncoderBlock": EncoderBlock, | |
"DecoderBlock": DecoderBlock, | |
}, | |
) | |
def show_image(image, cmap=None, title=None): | |
plt.imshow(image, cmap=cmap) | |
if title is not None: | |
plt.title(title) | |
plt.axis("off") | |
def predict(image): | |
real_img = tf.image.resize(image, [128, 128]) | |
real_img = real_img / 255.0 | |
real_img = np.expand_dims(real_img, axis=0) | |
pred_mask = unet.predict(real_img).reshape(128, 128) | |
real_img = real_img[0] | |
fig, ax = plt.subplots(1, 2, figsize=(10, 5)) | |
ax[0].imshow(real_img) | |
ax[0].set_title("Original Image") | |
ax[0].axis("off") | |
ax[1].imshow(pred_mask, cmap="gray") | |
ax[1].set_title("Predicted Mask") | |
ax[1].axis("off") | |
plt.tight_layout() | |
plt.show() | |
return pred_mask | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Image(type="numpy"), | |
examples=["./images/water_body_11.jpg", "./images/water_body_1011.jpg"], | |
title="Water Body Segmentation", | |
) | |
iface.launch() | |