Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import json | |
import io | |
from constants import ( | |
SUBMIT_INTRODUCTION, | |
COLUMN_NAMES, | |
MODEL_INFO, | |
ALL_RESULTS, | |
NEW_DATA_TITLE_TYPE, | |
SINGLE_DOMAIN_RESULTS, | |
TABLE_INTRODUCTION, | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
COLUMN_NAMES_HUMAN, | |
CSV_DIR_HUMAN_DOMAIN_RESULTS, | |
CSV_DIR_OPEN_DOMAIN_RESULTS, | |
HUMAN_DOMAIN_RESULTS, | |
CSV_DIR_SINGLE_DOMAIN_RESULTS, | |
TABLE_INTRODUCTION_HUMAN, | |
LEADERBORAD_INTRODUCTION, | |
OPEN_DOMAIN_RESULTS, | |
) | |
global \ | |
filter_component, \ | |
data_component_opendomain, \ | |
data_component_humandomain, \ | |
data_component_singledomain | |
def upload_file(files): | |
file_paths = [file.name for file in files] | |
return file_paths | |
def compute_scores(input_data): | |
return [ | |
None, | |
[ | |
input_data["total_score"], | |
input_data["aes_score"], | |
input_data["motion_score"], | |
input_data["facesim_cur"], | |
input_data["gme_score"], | |
input_data["nexus_score"], | |
input_data["natural_score"], | |
], | |
] | |
def compute_scores_human_domain(input_data): | |
return [ | |
None, | |
[ | |
input_data["total_score"], | |
input_data["aes_score"], | |
input_data["motion_score"], | |
input_data["facesim_cur"], | |
input_data["gme_score"], | |
input_data["natural_score"], | |
], | |
] | |
def add_opendomain_eval( | |
input_file, | |
model_name_textbox: str, | |
revision_name_textbox: str, | |
venue_type_dropdown: str, | |
team_name_textbox: str, | |
model_link: str, | |
): | |
if input_file is None: | |
return "Error! Empty file!" | |
else: | |
selected_model_data = json.load(io.BytesIO(input_file)) | |
scores = compute_scores(selected_model_data) | |
input_data = scores[1] | |
input_data = [float(i) for i in input_data] | |
csv_data = pd.read_csv(CSV_DIR_OPEN_DOMAIN_RESULTS) | |
if revision_name_textbox == "": | |
col = csv_data.shape[0] | |
model_name = model_name_textbox | |
name_list = [ | |
name.split("]")[0][1:] if name.endswith(")") else name | |
for name in csv_data["Model"] | |
] | |
assert model_name not in name_list | |
else: | |
model_name = revision_name_textbox | |
model_name_list = csv_data["Model"] | |
name_list = [ | |
name.split("]")[0][1:] if name.endswith(")") else name | |
for name in model_name_list | |
] | |
if revision_name_textbox not in name_list: | |
col = csv_data.shape[0] | |
else: | |
col = name_list.index(revision_name_textbox) | |
if model_link == "": | |
model_name = model_name # no url | |
else: | |
model_name = "[" + model_name + "](" + model_link + ")" | |
venue = venue_type_dropdown | |
if team_name_textbox == "": | |
team = "User Upload" | |
else: | |
team = team_name_textbox | |
new_data = [ | |
model_name, | |
venue, | |
team, | |
f"{input_data[0] * 100:.2f}%", | |
f"{input_data[1] * 100:.2f}%", | |
f"{input_data[2] * 100:.2f}%", | |
f"{input_data[3] * 100:.2f}%", | |
f"{input_data[4] * 100:.2f}%", | |
f"{input_data[5] * 100:.2f}%", | |
f"{input_data[6] * 100:.2f}%", | |
] | |
csv_data.loc[col] = new_data | |
csv_data.to_csv(CSV_DIR_OPEN_DOMAIN_RESULTS, index=False) | |
return "Evaluation successfully submitted!" | |
def add_humandomain_eval( | |
input_file, | |
model_name_textbox: str, | |
revision_name_textbox: str, | |
venue_type_dropdown: str, | |
team_name_textbox: str, | |
model_link: str, | |
): | |
if input_file is None: | |
return "Error! Empty file!" | |
else: | |
selected_model_data = json.load(io.BytesIO(input_file)) | |
scores = compute_scores_human_domain(selected_model_data) | |
input_data = scores[1] | |
input_data = [float(i) for i in input_data] | |
csv_data = pd.read_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS) | |
if revision_name_textbox == "": | |
col = csv_data.shape[0] | |
model_name = model_name_textbox | |
name_list = [ | |
name.split("]")[0][1:] if name.endswith(")") else name | |
for name in csv_data["Model"] | |
] | |
assert model_name not in name_list | |
else: | |
model_name = revision_name_textbox | |
model_name_list = csv_data["Model"] | |
name_list = [ | |
name.split("]")[0][1:] if name.endswith(")") else name | |
for name in model_name_list | |
] | |
if revision_name_textbox not in name_list: | |
col = csv_data.shape[0] | |
else: | |
col = name_list.index(revision_name_textbox) | |
if model_link == "": | |
model_name = model_name # no url | |
else: | |
model_name = "[" + model_name + "](" + model_link + ")" | |
venue = venue_type_dropdown | |
if team_name_textbox == "": | |
team = "User Upload" | |
else: | |
team = team_name_textbox | |
new_data = [ | |
model_name, | |
venue, | |
team, | |
f"{input_data[0] * 100:.2f}%", | |
f"{input_data[1] * 100:.2f}%", | |
f"{input_data[2] * 100:.2f}%", | |
f"{input_data[3] * 100:.2f}%", | |
f"{input_data[4] * 100:.2f}%", | |
f"{input_data[5] * 100:.2f}%", | |
] | |
csv_data.loc[col] = new_data | |
csv_data.to_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS, index=False) | |
return "Evaluation successfully submitted!" | |
def add_singledomain_eval( | |
input_file, | |
model_name_textbox: str, | |
revision_name_textbox: str, | |
venue_type_dropdown: str, | |
team_name_textbox: str, | |
model_link: str, | |
): | |
if input_file is None: | |
return "Error! Empty file!" | |
else: | |
selected_model_data = json.load(io.BytesIO(input_file)) | |
scores = compute_scores(selected_model_data) | |
input_data = scores[1] | |
input_data = [float(i) for i in input_data] | |
csv_data = pd.read_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS) | |
if revision_name_textbox == "": | |
col = csv_data.shape[0] | |
model_name = model_name_textbox | |
name_list = [ | |
name.split("]")[0][1:] if name.endswith(")") else name | |
for name in csv_data["Model"] | |
] | |
assert model_name not in name_list | |
else: | |
model_name = revision_name_textbox | |
model_name_list = csv_data["Model"] | |
name_list = [ | |
name.split("]")[0][1:] if name.endswith(")") else name | |
for name in model_name_list | |
] | |
if revision_name_textbox not in name_list: | |
col = csv_data.shape[0] | |
else: | |
col = name_list.index(revision_name_textbox) | |
if model_link == "": | |
model_name = model_name # no url | |
else: | |
model_name = "[" + model_name + "](" + model_link + ")" | |
venue = venue_type_dropdown | |
if team_name_textbox == "": | |
team = "User Upload" | |
else: | |
team = team_name_textbox | |
new_data = [ | |
model_name, | |
venue, | |
team, | |
f"{input_data[0] * 100:.2f}%", | |
f"{input_data[1] * 100:.2f}%", | |
f"{input_data[2] * 100:.2f}%", | |
f"{input_data[3] * 100:.2f}%", | |
f"{input_data[4] * 100:.2f}%", | |
f"{input_data[5] * 100:.2f}%", | |
f"{input_data[6] * 100:.2f}%", | |
] | |
csv_data.loc[col] = new_data | |
csv_data.to_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS, index=False) | |
return "Evaluation successfully submitted!" | |
def get_all_df_opendomain(): | |
df = pd.read_csv(CSV_DIR_OPEN_DOMAIN_RESULTS) | |
df = df.sort_values(by="TotalScoreβ", ascending=False) | |
return df | |
def get_baseline_df_opendomain(): | |
df = pd.read_csv(CSV_DIR_OPEN_DOMAIN_RESULTS) | |
df = df.sort_values(by="TotalScoreβ", ascending=False) | |
present_columns = MODEL_INFO + checkbox_group_opendomain.value | |
df = df[present_columns] | |
return df | |
def get_all_df_humandomain(): | |
df = pd.read_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS) | |
df = df.sort_values(by="TotalScoreβ", ascending=False) | |
return df | |
def get_baseline_df_humandomain(): | |
df = pd.read_csv(CSV_DIR_HUMAN_DOMAIN_RESULTS) | |
df = df.sort_values(by="TotalScoreβ", ascending=False) | |
present_columns = MODEL_INFO + checkbox_group_humandomain.value | |
df = df[present_columns] | |
return df | |
def get_all_df_singledomain(): | |
df = pd.read_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS) | |
df = df.sort_values(by="TotalScoreβ", ascending=False) | |
return df | |
def get_baseline_df_singledomain(): | |
df = pd.read_csv(CSV_DIR_SINGLE_DOMAIN_RESULTS) | |
df = df.sort_values(by="TotalScoreβ", ascending=False) | |
present_columns = MODEL_INFO + checkbox_group_singledomain.value | |
df = df[present_columns] | |
return df | |
block = gr.Blocks() | |
with block: | |
gr.HTML(""" | |
<div style='display: flex; align-items: center; justify-content: center; text-align: center;'> | |
<img src="https://www.pnglog.com/6xm07l.png" style='width: 400px; height: auto; margin-right: 10px;' /> | |
</div> | |
""") | |
gr.Markdown(LEADERBORAD_INTRODUCTION) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# table Opendomain | |
with gr.TabItem("π Open-Domain", elem_id="OpenS2V-Nexus-tab-table", id=0): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
gr.Markdown(TABLE_INTRODUCTION) | |
checkbox_group_opendomain = gr.CheckboxGroup( | |
choices=ALL_RESULTS, | |
value=OPEN_DOMAIN_RESULTS, | |
label="Select options", | |
interactive=True, | |
) | |
data_component_opendomain = gr.components.Dataframe( | |
value=get_baseline_df_opendomain, | |
headers=COLUMN_NAMES, | |
type="pandas", | |
datatype=NEW_DATA_TITLE_TYPE, | |
interactive=False, | |
visible=True, | |
) | |
def on_checkbox_group_change_opendomain(selected_columns): | |
selected_columns = [ | |
item for item in ALL_RESULTS if item in selected_columns | |
] | |
present_columns = MODEL_INFO + selected_columns | |
updated_data = get_baseline_df_opendomain()[present_columns] | |
updated_data = updated_data.sort_values( | |
by=present_columns[1], ascending=False | |
) | |
updated_headers = present_columns | |
update_datatype = [ | |
NEW_DATA_TITLE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers | |
] | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component | |
checkbox_group_opendomain.change( | |
fn=on_checkbox_group_change_opendomain, | |
inputs=checkbox_group_opendomain, | |
outputs=data_component_opendomain, | |
) | |
# table HumanDomain | |
with gr.TabItem("π Human-Domain", elem_id="OpenS2V-Nexus-tab-table", id=1): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
gr.Markdown(TABLE_INTRODUCTION_HUMAN) | |
checkbox_group_humandomain = gr.CheckboxGroup( | |
choices=HUMAN_DOMAIN_RESULTS, | |
value=HUMAN_DOMAIN_RESULTS, | |
label="Select options", | |
interactive=True, | |
) | |
data_component_humandomain = gr.components.Dataframe( | |
value=get_baseline_df_humandomain, | |
headers=COLUMN_NAMES_HUMAN, | |
type="pandas", | |
datatype=NEW_DATA_TITLE_TYPE, | |
interactive=False, | |
visible=True, | |
) | |
def on_checkbox_group_change_humandomain(selected_columns): | |
selected_columns = [ | |
item for item in ALL_RESULTS if item in selected_columns | |
] | |
present_columns = MODEL_INFO + selected_columns | |
updated_data = get_baseline_df_humandomain()[present_columns] | |
updated_data = updated_data.sort_values( | |
by=present_columns[1], ascending=False | |
) | |
updated_headers = present_columns | |
update_datatype = [ | |
NEW_DATA_TITLE_TYPE[COLUMN_NAMES_HUMAN.index(x)] | |
for x in updated_headers | |
] | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component | |
checkbox_group_humandomain.change( | |
fn=on_checkbox_group_change_humandomain, | |
inputs=checkbox_group_humandomain, | |
outputs=data_component_humandomain, | |
) | |
# table SingleDomain | |
with gr.TabItem("π Single-Domain", elem_id="OpenS2V-Nexus-tab-table", id=2): | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
gr.Markdown(TABLE_INTRODUCTION) | |
checkbox_group_singledomain = gr.CheckboxGroup( | |
choices=ALL_RESULTS, | |
value=SINGLE_DOMAIN_RESULTS, | |
label="Select options", | |
interactive=True, | |
) | |
data_component_singledomain = gr.components.Dataframe( | |
value=get_baseline_df_singledomain, | |
headers=COLUMN_NAMES, | |
type="pandas", | |
datatype=NEW_DATA_TITLE_TYPE, | |
interactive=False, | |
visible=True, | |
) | |
def on_checkbox_group_change_singledomain(selected_columns): | |
selected_columns = [ | |
item for item in ALL_RESULTS if item in selected_columns | |
] | |
present_columns = MODEL_INFO + selected_columns | |
updated_data = get_baseline_df_singledomain()[present_columns] | |
updated_data = updated_data.sort_values( | |
by=present_columns[1], ascending=False | |
) | |
updated_headers = present_columns | |
update_datatype = [ | |
NEW_DATA_TITLE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers | |
] | |
filter_component = gr.components.Dataframe( | |
value=updated_data, | |
headers=updated_headers, | |
type="pandas", | |
datatype=update_datatype, | |
interactive=False, | |
visible=True, | |
) | |
return filter_component | |
checkbox_group_singledomain.change( | |
fn=on_checkbox_group_change_singledomain, | |
inputs=checkbox_group_singledomain, | |
outputs=data_component_singledomain, | |
) | |
# table Submission | |
with gr.TabItem("π Submit here! ", elem_id="seed-benchmark-tab-table", id=4): | |
with gr.Row(): | |
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown( | |
"# βοΈβ¨ Submit your result here!", elem_classes="markdown-text" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox( | |
label="Model name", placeholder="ConsisID" | |
) | |
revision_name_textbox = gr.Textbox( | |
label="Revision Model Name (Optinal)", placeholder="ConsisID" | |
) | |
venue_type_dropdown = gr.Dropdown( | |
label="Venue Type", | |
choices=["Open-Source", "Close-Source"], | |
value="Open-Source", | |
) | |
team_name_textbox = gr.Textbox( | |
label="Your Team Name (If left blank, it will be user upload))", placeholder="User Upload" | |
) | |
model_link = gr.Textbox( | |
label="Model Link", | |
placeholder="https://github.com/PKU-YuanGroup/ConsisID", | |
) | |
with gr.Column(): | |
input_file = gr.File(label="Click to Upload a json File", type="binary") | |
submit_button_opendomain = gr.Button("Submit Result (Open-Domain)") | |
submit_button_humandomain = gr.Button("Submit Result (Human-Domain)") | |
submit_button_singledomain = gr.Button("Submit Result (Single-Domain)") | |
submission_result = gr.Markdown() | |
submit_button_opendomain.click( | |
add_opendomain_eval, | |
inputs=[ | |
input_file, | |
model_name_textbox, | |
revision_name_textbox, | |
venue_type_dropdown, | |
team_name_textbox, | |
model_link, | |
], | |
outputs=submission_result, | |
) | |
submit_button_humandomain.click( | |
add_humandomain_eval, | |
inputs=[ | |
input_file, | |
model_name_textbox, | |
revision_name_textbox, | |
venue_type_dropdown, | |
team_name_textbox, | |
model_link, | |
], | |
outputs=submission_result, | |
) | |
submit_button_singledomain.click( | |
add_singledomain_eval, | |
inputs=[ | |
input_file, | |
model_name_textbox, | |
revision_name_textbox, | |
venue_type_dropdown, | |
team_name_textbox, | |
model_link, | |
], | |
outputs=submission_result, | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click(get_baseline_df_opendomain, outputs=data_component_opendomain) | |
data_run.click(get_baseline_df_humandomain, outputs=data_component_humandomain) | |
data_run.click( | |
get_baseline_df_singledomain, outputs=data_component_singledomain | |
) | |
block.launch() | |