Spaces:
Running
on
L40S
Running
on
L40S
# Copyright 2024 ConsisID Authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
import math | |
from typing import Callable, Any, Dict, List, Optional, Tuple, Union | |
import cv2 | |
import numpy as np | |
import PIL | |
import torch | |
from transformers import T5EncoderModel, T5Tokenizer | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.loaders import CogVideoXLoraLoaderMixin | |
from diffusers.models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel | |
from diffusers.models.embeddings import get_3d_rotary_pos_embed | |
from diffusers.pipelines.consisid.pipeline_output import ConsisIDPipelineOutput | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.schedulers import CogVideoXDPMScheduler | |
from diffusers.utils import logging, replace_example_docstring | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.video_processor import VideoProcessor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import ConsisIDPipeline | |
>>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer | |
>>> from diffusers.utils import export_to_video | |
>>> from huggingface_hub import snapshot_download | |
>>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") | |
>>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( | |
... prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) | |
... ) | |
>>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) | |
>>> pipe.to("cuda") | |
>>> prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." | |
>>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" | |
>>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( | |
... face_helper_1, | |
... face_clip_model, | |
... face_helper_2, | |
... eva_transform_mean, | |
... eva_transform_std, | |
... face_main_model, | |
... "cuda", | |
... torch.bfloat16, | |
... image, | |
... is_align_face=True, | |
... ) | |
>>> video = pipe( | |
... image=image, | |
... prompt=prompt, | |
... num_inference_steps=50, | |
... guidance_scale=6.0, | |
... use_dynamic_cfg=False, | |
... id_vit_hidden=id_vit_hidden, | |
... id_cond=id_cond, | |
... kps_cond=face_kps, | |
... generator=torch.Generator("cuda").manual_seed(42), | |
... ) | |
>>> export_to_video(video.frames[0], "output.mp4", fps=8) | |
``` | |
""" | |
def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): | |
""" | |
This function draws keypoints and the limbs connecting them on an image. | |
Parameters: | |
- image_pil (PIL.Image): Input image as a PIL object. | |
- kps (list of tuples): A list of keypoints where each keypoint is a tuple of (x, y) coordinates. | |
- color_list (list of tuples, optional): List of colors (in RGB format) for each keypoint. Default is a set of five | |
colors. | |
Returns: | |
- PIL.Image: Image with the keypoints and limbs drawn. | |
""" | |
stickwidth = 4 | |
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) | |
kps = np.array(kps) | |
w, h = image_pil.size | |
out_img = np.zeros([h, w, 3]) | |
for i in range(len(limbSeq)): | |
index = limbSeq[i] | |
color = color_list[index[0]] | |
x = kps[index][:, 0] | |
y = kps[index][:, 1] | |
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 | |
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) | |
polygon = cv2.ellipse2Poly( | |
(int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 | |
) | |
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) | |
out_img = (out_img * 0.6).astype(np.uint8) | |
for idx_kp, kp in enumerate(kps): | |
color = color_list[idx_kp] | |
x, y = kp | |
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) | |
out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) | |
return out_img_pil | |
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid | |
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
""" | |
This function calculates the resize and crop region for an image to fit a target width and height while preserving | |
the aspect ratio. | |
Parameters: | |
- src (tuple): A tuple containing the source image's height (h) and width (w). | |
- tgt_width (int): The target width to resize the image. | |
- tgt_height (int): The target height to resize the image. | |
Returns: | |
- tuple: Two tuples representing the crop region: | |
1. The top-left coordinates of the crop region. | |
2. The bottom-right coordinates of the crop region. | |
""" | |
tw = tgt_width | |
th = tgt_height | |
h, w = src | |
r = h / w | |
if r > (th / tw): | |
resize_height = th | |
resize_width = int(round(th / h * w)) | |
else: | |
resize_width = tw | |
resize_height = int(round(tw / w * h)) | |
crop_top = int(round((th - resize_height) / 2.0)) | |
crop_left = int(round((tw - resize_width) / 2.0)) | |
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
r""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
class ConsisIDPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): | |
r""" | |
Pipeline for image-to-video generation using ConsisID. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. | |
text_encoder ([`T5EncoderModel`]): | |
Frozen text-encoder. ConsisID uses | |
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the | |
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. | |
tokenizer (`T5Tokenizer`): | |
Tokenizer of class | |
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). | |
transformer ([`ConsisIDTransformer3DModel`]): | |
A text conditioned `ConsisIDTransformer3DModel` to denoise the encoded video latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `transformer` to denoise the encoded video latents. | |
""" | |
_optional_components = [] | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
_callback_tensor_inputs = [ | |
"latents", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
def __init__( | |
self, | |
tokenizer: T5Tokenizer, | |
text_encoder: T5EncoderModel, | |
vae: AutoencoderKLCogVideoX, | |
transformer: ConsisIDTransformer3DModel, | |
scheduler: CogVideoXDPMScheduler, | |
): | |
super().__init__() | |
self.register_modules( | |
tokenizer=tokenizer, | |
text_encoder=text_encoder, | |
vae=vae, | |
transformer=transformer, | |
scheduler=scheduler, | |
) | |
self.vae_scale_factor_spatial = ( | |
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | |
) | |
self.vae_scale_factor_temporal = ( | |
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 | |
) | |
self.vae_scaling_factor_image = ( | |
self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7 | |
) | |
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) | |
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds | |
def _get_t5_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]] = None, | |
num_videos_per_prompt: int = 1, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
device = device or self._execution_device | |
dtype = dtype or self.text_encoder.dtype | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because `max_sequence_length` is set to " | |
f" {max_sequence_length} tokens: {removed_text}" | |
) | |
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
_, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
do_classifier_free_guidance: bool = True, | |
num_videos_per_prompt: int = 1, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
Whether to use classifier free guidance or not. | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
device: (`torch.device`, *optional*): | |
torch device | |
dtype: (`torch.dtype`, *optional*): | |
torch dtype | |
""" | |
device = device or self._execution_device | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
if prompt is not None: | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
prompt_embeds = self._get_t5_prompt_embeds( | |
prompt=prompt, | |
num_videos_per_prompt=num_videos_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
negative_prompt_embeds = self._get_t5_prompt_embeds( | |
prompt=negative_prompt, | |
num_videos_per_prompt=num_videos_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
return prompt_embeds, negative_prompt_embeds | |
def prepare_latents( | |
self, | |
image: torch.Tensor, | |
batch_size: int = 1, | |
num_channels_latents: int = 16, | |
num_frames: int = 13, | |
height: int = 60, | |
width: int = 90, | |
dtype: Optional[torch.dtype] = None, | |
device: Optional[torch.device] = None, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.Tensor] = None, | |
kps_cond: Optional[torch.Tensor] = None, | |
): | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 | |
shape = ( | |
batch_size, | |
num_frames, | |
num_channels_latents, | |
height // self.vae_scale_factor_spatial, | |
width // self.vae_scale_factor_spatial, | |
) | |
image = image.unsqueeze(2) # [B, C, F, H, W] | |
if isinstance(generator, list): | |
image_latents = [ | |
retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size) | |
] | |
if kps_cond is not None: | |
kps_cond = kps_cond.unsqueeze(2) | |
kps_cond_latents = [ | |
retrieve_latents(self.vae.encode(kps_cond[i].unsqueeze(0)), generator[i]) | |
for i in range(batch_size) | |
] | |
else: | |
image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image] | |
if kps_cond is not None: | |
kps_cond = kps_cond.unsqueeze(2) | |
kps_cond_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in kps_cond] | |
image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] | |
image_latents = self.vae_scaling_factor_image * image_latents | |
if kps_cond is not None: | |
kps_cond_latents = torch.cat(kps_cond_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] | |
kps_cond_latents = self.vae_scaling_factor_image * kps_cond_latents | |
padding_shape = ( | |
batch_size, | |
num_frames - 2, | |
num_channels_latents, | |
height // self.vae_scale_factor_spatial, | |
width // self.vae_scale_factor_spatial, | |
) | |
else: | |
padding_shape = ( | |
batch_size, | |
num_frames - 1, | |
num_channels_latents, | |
height // self.vae_scale_factor_spatial, | |
width // self.vae_scale_factor_spatial, | |
) | |
latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) | |
if kps_cond is not None: | |
image_latents = torch.cat([image_latents, kps_cond_latents, latent_padding], dim=1) | |
else: | |
image_latents = torch.cat([image_latents, latent_padding], dim=1) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents, image_latents | |
# Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents | |
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: | |
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] | |
latents = 1 / self.vae_scaling_factor_image * latents | |
frames = self.vae.decode(latents).sample | |
return frames | |
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, timesteps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = timesteps[t_start * self.scheduler.order :] | |
return timesteps, num_inference_steps - t_start | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
image, | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
callback_on_step_end_tensor_inputs, | |
latents=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if ( | |
not isinstance(image, torch.Tensor) | |
and not isinstance(image, PIL.Image.Image) | |
and not isinstance(image, list) | |
): | |
raise ValueError( | |
"`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
f" {type(image)}" | |
) | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def _prepare_rotary_positional_embeddings( | |
self, | |
height: int, | |
width: int, | |
num_frames: int, | |
device: torch.device, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
base_size_width = self.transformer.config.sample_width // self.transformer.config.patch_size | |
base_size_height = self.transformer.config.sample_height // self.transformer.config.patch_size | |
grid_crops_coords = get_resize_crop_region_for_grid( | |
(grid_height, grid_width), base_size_width, base_size_height | |
) | |
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
embed_dim=self.transformer.config.attention_head_dim, | |
crops_coords=grid_crops_coords, | |
grid_size=(grid_height, grid_width), | |
temporal_size=num_frames, | |
device=device, | |
) | |
return freqs_cos, freqs_sin | |
def guidance_scale(self): | |
return self._guidance_scale | |
def num_timesteps(self): | |
return self._num_timesteps | |
def attention_kwargs(self): | |
return self._attention_kwargs | |
def interrupt(self): | |
return self._interrupt | |
def __call__( | |
self, | |
image: PipelineImageInput, | |
prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
height: int = 480, | |
width: int = 720, | |
num_frames: int = 49, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 6.0, | |
use_dynamic_cfg: bool = False, | |
num_videos_per_prompt: int = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: str = "pil", | |
return_dict: bool = True, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 226, | |
id_vit_hidden: Optional[torch.Tensor] = None, | |
id_cond: Optional[torch.Tensor] = None, | |
kps_cond: Optional[torch.Tensor] = None, | |
) -> Union[ConsisIDPipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
image (`PipelineImageInput`): | |
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): | |
The height in pixels of the generated image. This is set to 480 by default for the best results. | |
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): | |
The width in pixels of the generated image. This is set to 720 by default for the best results. | |
num_frames (`int`, defaults to `49`): | |
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will | |
contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where | |
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that | |
needs to be satisfied is that of divisibility mentioned above. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 6): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
use_dynamic_cfg (`bool`, *optional*, defaults to `False`): | |
If True, dynamically adjusts the guidance scale during inference. This allows the model to use a | |
progressive guidance scale, improving the balance between text-guided generation and image quality over | |
the course of the inference steps. Typically, early inference steps use a higher guidance scale for | |
more faithful image generation, while later steps reduce it for more diverse and natural results. | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
The number of videos to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int`, defaults to `226`): | |
Maximum sequence length in encoded prompt. Must be consistent with | |
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results. | |
id_vit_hidden (`Optional[torch.Tensor]`, *optional*): | |
The tensor representing the hidden features extracted from the face model, which are used to condition | |
the local facial extractor. This is crucial for the model to obtain high-frequency information of the | |
face. If not provided, the local facial extractor will not run normally. | |
id_cond (`Optional[torch.Tensor]`, *optional*): | |
The tensor representing the hidden features extracted from the clip model, which are used to condition | |
the local facial extractor. This is crucial for the model to edit facial features If not provided, the | |
local facial extractor will not run normally. | |
kps_cond (`Optional[torch.Tensor]`, *optional*): | |
A tensor that determines whether the global facial extractor use keypoint information for conditioning. | |
If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are | |
used during the generation process. This helps ensure the model retains more facial low-frequency | |
information. | |
Examples: | |
Returns: | |
[`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] or `tuple`: | |
[`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial | |
width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial | |
num_frames = num_frames or self.transformer.config.sample_frames | |
num_videos_per_prompt = 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
image=image, | |
prompt=prompt, | |
height=height, | |
width=width, | |
negative_prompt=negative_prompt, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
latents=latents, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
self._guidance_scale = guidance_scale | |
self._attention_kwargs = attention_kwargs | |
self._interrupt = False | |
# 2. Default call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device) | |
self._num_timesteps = len(timesteps) | |
# 5. Prepare latents | |
is_kps = getattr(self.transformer.config, "is_kps", False) | |
kps_cond = kps_cond if is_kps else None | |
if kps_cond is not None: | |
kps_cond = draw_kps(image, kps_cond) | |
kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to( | |
device, dtype=prompt_embeds.dtype | |
) | |
image = self.video_processor.preprocess(image, height=height, width=width).to( | |
device, dtype=prompt_embeds.dtype | |
) | |
latent_channels = self.transformer.config.in_channels // 2 | |
latents, image_latents = self.prepare_latents( | |
image, | |
batch_size * num_videos_per_prompt, | |
latent_channels, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
kps_cond, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Create rotary embeds if required | |
image_rotary_emb = ( | |
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | |
if self.transformer.config.use_rotary_positional_embeddings | |
else None | |
) | |
# 8. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
# for DPM-solver++ | |
old_pred_original_sample = None | |
timesteps_cpu = timesteps.cpu() | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents | |
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
# predict noise model_output | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
encoder_hidden_states=prompt_embeds, | |
timestep=timestep, | |
image_rotary_emb=image_rotary_emb, | |
attention_kwargs=attention_kwargs, | |
return_dict=False, | |
id_vit_hidden=id_vit_hidden, | |
id_cond=id_cond, | |
)[0] | |
noise_pred = noise_pred.float() | |
# perform guidance | |
if use_dynamic_cfg: | |
self._guidance_scale = 1 + guidance_scale * ( | |
( | |
1 | |
- math.cos( | |
math.pi | |
* ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0 | |
) | |
) | |
/ 2 | |
) | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
else: | |
latents, old_pred_original_sample = self.scheduler.step( | |
noise_pred, | |
old_pred_original_sample, | |
t, | |
timesteps[i - 1] if i > 0 else None, | |
latents, | |
**extra_step_kwargs, | |
return_dict=False, | |
) | |
latents = latents.to(prompt_embeds.dtype) | |
# call the callback, if provided | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if not output_type == "latent": | |
video = self.decode_latents(latents) | |
video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return ConsisIDPipelineOutput(frames=video) |