Th3r0 commited on
Commit
de93a91
1 Parent(s): 44b3042

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -10
app.py CHANGED
@@ -12,10 +12,10 @@ loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction
12
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
13
 
14
  tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
15
- base_model = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall")
16
- peft_model_id = "rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small"
17
- model = PeftModel.from_pretrained(base_model, peft_model_id)
18
- #merged_model = model.merge_and_unload()
19
 
20
 
21
  # Handle calls to DistilBERT------------------------------------------
@@ -53,15 +53,15 @@ def AlbertUntrained_fn(text1, text2):
53
  # Handle calls to Deberta--------------------------------------------
54
  DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
55
  DebertanoLORA_pipe = pipeline("text-classification", model="rajevan123/STS-Conventional-Fine-Tuning")
56
- DebertawithLORA_pipe = pipeline("text-classification",model=model, tokenizer=tokenizer2)
57
 
58
  #STS models
59
  def DebertanoLORA_fn(text1, text2):
60
  return DebertanoLORA_pipe({'text': text1, 'text_pair': text2})
61
 
62
  def DebertawithLORA_fn(text1, text2):
63
- return DebertawithLORA_pipe({'text': text1, 'text_pair': text2})
64
- #return ("working2")
65
 
66
  def DebertaUntrained_fn(text1, text2):
67
  return DebertaUntrained_pipe({'text': text1, 'text_pair': text2})
@@ -73,6 +73,50 @@ def displayMetricStatsUntrained():
73
  return "No statistics to display for untrained models"
74
 
75
  def displayMetricStatsText():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
77
  event_acc = event_accumulator.EventAccumulator(file_name,
78
  size_guidance={
@@ -94,6 +138,71 @@ def displayMetricStatsText():
94
 
95
  return metrics
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  def displayMetricStatsGraph():
98
  file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
99
  event_acc = event_accumulator.EventAccumulator(file_name,
@@ -199,7 +308,7 @@ with gr.Blocks(
199
  btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
200
  btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
201
  btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
202
- btnTextClassStats.click(fn=DebertawithLORA_fn, outputs=TextClassLoraStats) #to be changed
203
 
204
  with gr.Tab("Natural Language Inferencing"):
205
  with gr.Row():
@@ -313,8 +422,8 @@ with gr.Blocks(
313
  sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
314
  sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
315
  btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
316
- #btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSNoLoraStats)
317
- #btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSLoraStats)
318
 
319
  with gr.Tab("More informatioen"):
320
  gr.Markdown("stuff to add")
 
12
  tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
13
 
14
  tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
15
+ # base_model = AutoModel.from_pretrained("microsoft/deberta-v3-xsmall")
16
+ # peft_model_id = "rajevan123/STS-Lora-Fine-Tuning-Capstone-Deberta-small"
17
+ # model = PeftModel.from_pretrained(base_model, peft_model_id)
18
+ # #merged_model = model.merge_and_unload()
19
 
20
 
21
  # Handle calls to DistilBERT------------------------------------------
 
53
  # Handle calls to Deberta--------------------------------------------
54
  DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
55
  DebertanoLORA_pipe = pipeline("text-classification", model="rajevan123/STS-Conventional-Fine-Tuning")
56
+ #DebertawithLORA_pipe = pipeline("text-classification",model=model, tokenizer=tokenizer2)
57
 
58
  #STS models
59
  def DebertanoLORA_fn(text1, text2):
60
  return DebertanoLORA_pipe({'text': text1, 'text_pair': text2})
61
 
62
  def DebertawithLORA_fn(text1, text2):
63
+ #return DebertawithLORA_pipe({'text': text1, 'text_pair': text2})
64
+ return ("working2")
65
 
66
  def DebertaUntrained_fn(text1, text2):
67
  return DebertaUntrained_pipe({'text': text1, 'text_pair': text2})
 
73
  return "No statistics to display for untrained models"
74
 
75
  def displayMetricStatsText():
76
+ file_name = 'events.out.tfevents.distilbertSA-conventional.0'
77
+ event_acc = event_accumulator.EventAccumulator(file_name,
78
+ size_guidance={
79
+ event_accumulator.COMPRESSED_HISTOGRAMS: 500,
80
+ event_accumulator.IMAGES: 4,
81
+ event_accumulator.AUDIO: 4,
82
+ event_accumulator.SCALARS: 0,
83
+ event_accumulator.HISTOGRAMS: 1,
84
+ })
85
+
86
+ event_acc.Reload()
87
+ accuracy_data = event_acc.Scalars('eval/accuracy')
88
+ loss_data = event_acc.Scalars('eval/loss')
89
+ metrics = ''
90
+ for i in range(0, len(loss_data)):
91
+ metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
92
+ metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
93
+ metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
94
+
95
+ return metrics
96
+
97
+ def displayMetricStatsTextTCLora():
98
+ file_name = 'events.out.tfevents.distilbertSA-LORA.0'
99
+ event_acc = event_accumulator.EventAccumulator(file_name,
100
+ size_guidance={
101
+ event_accumulator.COMPRESSED_HISTOGRAMS: 500,
102
+ event_accumulator.IMAGES: 4,
103
+ event_accumulator.AUDIO: 4,
104
+ event_accumulator.SCALARS: 0,
105
+ event_accumulator.HISTOGRAMS: 1,
106
+ })
107
+
108
+ event_acc.Reload()
109
+ accuracy_data = event_acc.Scalars('eval/accuracy')
110
+ loss_data = event_acc.Scalars('eval/loss')
111
+ metrics = ''
112
+ for i in range(0, len(loss_data)):
113
+ metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
114
+ metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
115
+ metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
116
+
117
+ return metrics
118
+
119
+ def displayMetricStatsTextNLINoLora():
120
  file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
121
  event_acc = event_accumulator.EventAccumulator(file_name,
122
  size_guidance={
 
138
 
139
  return metrics
140
 
141
+ def displayMetricStatsTextNLILora():
142
+ file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
143
+ event_acc = event_accumulator.EventAccumulator(file_name,
144
+ size_guidance={
145
+ event_accumulator.COMPRESSED_HISTOGRAMS: 500,
146
+ event_accumulator.IMAGES: 4,
147
+ event_accumulator.AUDIO: 4,
148
+ event_accumulator.SCALARS: 0,
149
+ event_accumulator.HISTOGRAMS: 1,
150
+ })
151
+
152
+ event_acc.Reload()
153
+ accuracy_data = event_acc.Scalars('eval/accuracy')
154
+ loss_data = event_acc.Scalars('eval/loss')
155
+ metrics = ''
156
+ for i in range(0, len(loss_data)):
157
+ metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
158
+ metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
159
+ metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
160
+
161
+ return metrics
162
+
163
+ def displayMetricStatsTextSTSLora():
164
+ file_name = 'events.out.tfevents.STS-Lora.2'
165
+ event_acc = event_accumulator.EventAccumulator(file_name,
166
+ size_guidance={
167
+ event_accumulator.COMPRESSED_HISTOGRAMS: 500,
168
+ event_accumulator.IMAGES: 4,
169
+ event_accumulator.AUDIO: 4,
170
+ event_accumulator.SCALARS: 0,
171
+ event_accumulator.HISTOGRAMS: 1,
172
+ })
173
+
174
+ event_acc.Reload()
175
+ accuracy_data = event_acc.Scalars('eval/accuracy')
176
+ loss_data = event_acc.Scalars('eval/loss')
177
+ metrics = ''
178
+ for i in range(0, len(loss_data)):
179
+ metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
180
+ metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
181
+ metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
182
+
183
+ return metrics
184
+ def displayMetricStatsTextSTSNoLora():
185
+ file_name = 'events.out.tfevents.STS-Conventional.0'
186
+ event_acc = event_accumulator.EventAccumulator(file_name,
187
+ size_guidance={
188
+ event_accumulator.COMPRESSED_HISTOGRAMS: 500,
189
+ event_accumulator.IMAGES: 4,
190
+ event_accumulator.AUDIO: 4,
191
+ event_accumulator.SCALARS: 0,
192
+ event_accumulator.HISTOGRAMS: 1,
193
+ })
194
+
195
+ event_acc.Reload()
196
+ accuracy_data = event_acc.Scalars('eval/accuracy')
197
+ loss_data = event_acc.Scalars('eval/loss')
198
+ metrics = ''
199
+ for i in range(0, len(loss_data)):
200
+ metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
201
+ metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
202
+ metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
203
+
204
+ return metrics
205
+
206
  def displayMetricStatsGraph():
207
  file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
208
  event_acc = event_accumulator.EventAccumulator(file_name,
 
308
  btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
309
  btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
310
  btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
311
+ btnTextClassStats.click(fn=displayMetricStatsTextTCLora, outputs=TextClassLoraStats) #to be changed
312
 
313
  with gr.Tab("Natural Language Inferencing"):
314
  with gr.Row():
 
422
  sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
423
  sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
424
  btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
425
+ btnSTSStats.click(fn=displayMetricStatsTextSTSNoLora, outputs=STSNoLoraStats)
426
+ btnSTSStats.click(fn=displayMetricStatsTextSTSLora, outputs=STSLoraStats)
427
 
428
  with gr.Tab("More informatioen"):
429
  gr.Markdown("stuff to add")