Spaces:
Sleeping
Sleeping
Benjamona97
commited on
Commit
•
13ebe63
0
Parent(s):
Add application file
Browse files- .gitignore +10 -0
- Dockerfile +11 -0
- app.py +187 -0
- chainlit.md +5 -0
- modules/database/__init__.py +0 -0
- modules/database/database.py +71 -0
- modules/database/sqlitedatabase.py +21 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
.chainlit
|
3 |
+
*__pycache__
|
4 |
+
.idea
|
5 |
+
.env
|
6 |
+
record_manager_cache.sql
|
7 |
+
storage
|
8 |
+
.DS_Store
|
9 |
+
data
|
10 |
+
*.sql
|
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import List
|
5 |
+
|
6 |
+
|
7 |
+
import chainlit as cl
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
from langchain.pydantic_v1 import BaseModel, Field
|
10 |
+
from langchain.tools import StructuredTool
|
11 |
+
from langchain.indexes import SQLRecordManager, index
|
12 |
+
from langchain.schema import Document
|
13 |
+
from langchain.agents import initialize_agent, AgentExecutor
|
14 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.vectorstores.chroma import Chroma
|
16 |
+
from langchain_community.document_loaders import CSVLoader
|
17 |
+
from langchain_core.prompts import ChatPromptTemplate
|
18 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
19 |
+
from openai import AsyncOpenAI
|
20 |
+
|
21 |
+
# from modules.database.database import PostgresDB
|
22 |
+
from modules.database.sqlitedatabase import Database
|
23 |
+
|
24 |
+
"""
|
25 |
+
Here we define some environment variables and the tools that the agent will use.
|
26 |
+
Along with some configuration for the app to start.
|
27 |
+
"""
|
28 |
+
load_dotenv()
|
29 |
+
|
30 |
+
chunk_size = 512
|
31 |
+
chunk_overlap = 50
|
32 |
+
|
33 |
+
embeddings_model = OpenAIEmbeddings()
|
34 |
+
openai_client = AsyncOpenAI()
|
35 |
+
|
36 |
+
CSV_STORAGE_PATH = "./data"
|
37 |
+
|
38 |
+
|
39 |
+
def remove_triple_backticks(text):
|
40 |
+
# Use a regular expression to replace all occurrences of triple backticks with an empty string
|
41 |
+
cleaned_text = re.sub(r"```", "", text)
|
42 |
+
return cleaned_text
|
43 |
+
|
44 |
+
|
45 |
+
def process_pdfs(pdf_storage_path: str):
|
46 |
+
csv_directory = Path(pdf_storage_path)
|
47 |
+
docs = [] # type: List[Document]
|
48 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
49 |
+
chunk_size=chunk_size, chunk_overlap=50)
|
50 |
+
|
51 |
+
for csv_path in csv_directory.glob("*.csv"):
|
52 |
+
loader = CSVLoader(file_path=str(csv_path))
|
53 |
+
documents = loader.load()
|
54 |
+
docs += text_splitter.split_documents(documents)
|
55 |
+
|
56 |
+
documents_search = Chroma.from_documents(docs, embeddings_model)
|
57 |
+
|
58 |
+
namespace = "chromadb/my_documents"
|
59 |
+
record_manager = SQLRecordManager(
|
60 |
+
namespace, db_url="sqlite:///record_manager_cache.sql"
|
61 |
+
)
|
62 |
+
record_manager.create_schema()
|
63 |
+
|
64 |
+
index_result = index(
|
65 |
+
docs,
|
66 |
+
record_manager,
|
67 |
+
documents_search,
|
68 |
+
cleanup="incremental",
|
69 |
+
source_id_key="source",
|
70 |
+
)
|
71 |
+
|
72 |
+
print(f"Indexing stats: {index_result}")
|
73 |
+
|
74 |
+
return documents_search
|
75 |
+
|
76 |
+
|
77 |
+
doc_search = process_pdfs(CSV_STORAGE_PATH)
|
78 |
+
|
79 |
+
"""
|
80 |
+
Execute SQL query tool definition along schemas.
|
81 |
+
"""
|
82 |
+
|
83 |
+
|
84 |
+
def execute_sql(query: str) -> str:
|
85 |
+
"""
|
86 |
+
Execute SQLite queries queries against the database. Delete all markdown code and backticks from the query.
|
87 |
+
"""
|
88 |
+
db = Database("./db/mydatabase.db")
|
89 |
+
db.connect()
|
90 |
+
|
91 |
+
# results = db.run_sql_to_markdown(query)
|
92 |
+
cleaned_query = remove_triple_backticks(query)
|
93 |
+
|
94 |
+
results = db.execute_query(cleaned_query)
|
95 |
+
|
96 |
+
return results + f"\nQuery used:\n```sql{cleaned_query}```"
|
97 |
+
|
98 |
+
|
99 |
+
class ExecuteSqlToolInput(BaseModel):
|
100 |
+
query: str = Field(
|
101 |
+
description="A SQLite query to be executed agains the database")
|
102 |
+
|
103 |
+
|
104 |
+
execute_sql_tool = StructuredTool(
|
105 |
+
func=execute_sql,
|
106 |
+
name="Execute SQL",
|
107 |
+
description="useful for when you need to execute SQL queries against the database. Always use a clause LIMIT 10",
|
108 |
+
args_schema=ExecuteSqlToolInput
|
109 |
+
)
|
110 |
+
|
111 |
+
"""
|
112 |
+
Research database tool definition along schemas.
|
113 |
+
"""
|
114 |
+
|
115 |
+
|
116 |
+
def research_database(user_request: str) -> str:
|
117 |
+
"""
|
118 |
+
Searches for table definitions matching the user request
|
119 |
+
"""
|
120 |
+
search_kwargs = {"k": 30}
|
121 |
+
|
122 |
+
retriever = doc_search.as_retriever(search_kwargs=search_kwargs)
|
123 |
+
|
124 |
+
def format_docs(docs):
|
125 |
+
for i, doc in enumerate(docs):
|
126 |
+
print(f"{i+1}. {doc.page_content}")
|
127 |
+
return "\n\n".join([d.page_content for d in docs])
|
128 |
+
|
129 |
+
results = retriever.invoke(user_request)
|
130 |
+
|
131 |
+
return format_docs(results)
|
132 |
+
|
133 |
+
|
134 |
+
class ResearchDatabaseToolInput(BaseModel):
|
135 |
+
user_request: str = Field(
|
136 |
+
description="The user query to search against the table definitions for matches.")
|
137 |
+
|
138 |
+
|
139 |
+
research_database_tool = StructuredTool(
|
140 |
+
func=research_database,
|
141 |
+
name="Search db info",
|
142 |
+
description="Search for database table definitions so you can have context for building SQL queries. The queries needs to be SQLite compatible.",
|
143 |
+
args_schema=ResearchDatabaseToolInput
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
@cl.on_chat_start
|
148 |
+
def start():
|
149 |
+
tools = [execute_sql_tool, research_database_tool]
|
150 |
+
|
151 |
+
llm = ChatOpenAI(model="gpt-4", temperature=0, verbose=True)
|
152 |
+
|
153 |
+
prompt = ChatPromptTemplate.from_template(
|
154 |
+
"""
|
155 |
+
You are a SQLite world class data scientist, based on user query
|
156 |
+
use your tools to do the job. Usually you would start by analyzing
|
157 |
+
for possible SQL queries the user wants to build based on your knowledge base.
|
158 |
+
Remember your tools are:
|
159 |
+
|
160 |
+
- execute_sql (bring back the results as of running the query against the database)
|
161 |
+
- research_database (search for table definitions so you can build a SQLite Query)
|
162 |
+
|
163 |
+
Remember, you are building SQLite compatible queries. If you don't know the answer don't
|
164 |
+
make anything up. Always ask for feedback. One last detail: always run the querys with LIMIT 10 and add
|
165 |
+
the SQL query as markdown to the final answer so the user knows what SQL query was used for the job and
|
166 |
+
can copy it for further use.
|
167 |
+
|
168 |
+
REMEMBER TO GENERATE ALWAYS SQLITE COMPATIBLE QUERIES.
|
169 |
+
|
170 |
+
User query: {input}
|
171 |
+
"""
|
172 |
+
)
|
173 |
+
|
174 |
+
agent = initialize_agent(tools=tools, prompt=prompt,
|
175 |
+
llm=llm, handle_parsing_errors=True)
|
176 |
+
|
177 |
+
cl.user_session.set("agent", agent)
|
178 |
+
|
179 |
+
|
180 |
+
@cl.on_message
|
181 |
+
async def main(message: cl.Message):
|
182 |
+
agent = cl.user_session.get("agent") # type: AgentExecutor
|
183 |
+
res = await agent.arun(
|
184 |
+
message.content, callbacks=[cl.AsyncLangchainCallbackHandler()]
|
185 |
+
)
|
186 |
+
|
187 |
+
await cl.Message(content=res).send()
|
chainlit.md
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
To start, you can try to ask a simple question:
|
2 |
+
|
3 |
+
```"I need all customers please!"```
|
4 |
+
|
5 |
+
#### Then you can expand each cell execution to watch the agent's work and analize each step trough the process.
|
modules/database/__init__.py
ADDED
File without changes
|
modules/database/database.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import psycopg2
|
4 |
+
from tabulate import tabulate
|
5 |
+
|
6 |
+
|
7 |
+
class PostgresDB:
|
8 |
+
"""
|
9 |
+
A class to manage postgres connections and queries
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(self):
|
13 |
+
self.conn = None
|
14 |
+
self.cur = None
|
15 |
+
|
16 |
+
def __enter__(self):
|
17 |
+
return self
|
18 |
+
|
19 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
20 |
+
if self.cur:
|
21 |
+
self.cur.close()
|
22 |
+
if self.conn:
|
23 |
+
self.conn.close()
|
24 |
+
|
25 |
+
def connect_with_url(self, url):
|
26 |
+
self.conn = psycopg2.connect(url)
|
27 |
+
self.cur = self.conn.cursor()
|
28 |
+
|
29 |
+
def close(self):
|
30 |
+
if self.cur:
|
31 |
+
self.cur.close()
|
32 |
+
if self.conn:
|
33 |
+
self.conn.close()
|
34 |
+
|
35 |
+
def run_sql(self, sql) -> str:
|
36 |
+
"""
|
37 |
+
Run a SQL query against the postgres database.
|
38 |
+
Returns JSON.
|
39 |
+
"""
|
40 |
+
self.cur.execute(sql)
|
41 |
+
columns = [desc[0] for desc in self.cur.description]
|
42 |
+
res = self.cur.fetchall()
|
43 |
+
|
44 |
+
list_of_dicts = [dict(zip(columns, row)) for row in res]
|
45 |
+
|
46 |
+
json_result = json.dumps(list_of_dicts, indent=4)
|
47 |
+
|
48 |
+
return json_result
|
49 |
+
|
50 |
+
# method to run a sql and return markdown
|
51 |
+
def run_sql_to_markdown(self, sql) -> str:
|
52 |
+
"""
|
53 |
+
Run a SQL query against the postgres database
|
54 |
+
Returns markdown table.
|
55 |
+
"""
|
56 |
+
self.cur.execute(sql)
|
57 |
+
columns = [desc[0] for desc in self.cur.description]
|
58 |
+
res = self.cur.fetchall()
|
59 |
+
|
60 |
+
list_of_dicts = [dict(zip(columns, row)) for row in res]
|
61 |
+
|
62 |
+
markdown_table = self.to_markdown(list_of_dicts)
|
63 |
+
print(markdown_table)
|
64 |
+
return markdown_table
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def to_markdown(data) -> str:
|
68 |
+
"""
|
69 |
+
Convert a list of dictionaries to markdown
|
70 |
+
"""
|
71 |
+
return tabulate(data, headers="keys", tablefmt="pipe")
|
modules/database/sqlitedatabase.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
import tabulate
|
3 |
+
|
4 |
+
class Database:
|
5 |
+
def __init__(self, uri):
|
6 |
+
self.uri = uri
|
7 |
+
self.connection = None
|
8 |
+
|
9 |
+
def connect(self):
|
10 |
+
self.connection = sqlite3.connect(self.uri)
|
11 |
+
|
12 |
+
def execute_query(self, query):
|
13 |
+
cursor = self.connection.cursor()
|
14 |
+
cursor.execute(query)
|
15 |
+
result = cursor.fetchall()
|
16 |
+
cursor.close()
|
17 |
+
headers = [description[0] for description in cursor.description]
|
18 |
+
return tabulate.tabulate(result, headers, tablefmt="pipe")
|
19 |
+
|
20 |
+
def close(self):
|
21 |
+
self.connection.close()
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai==1.10.0
|
2 |
+
psycopg==3.1.14
|
3 |
+
psycopg2-binary==2.9.9
|
4 |
+
python-dotenv==1.0.0
|
5 |
+
tiktoken==0.5.2
|
6 |
+
python-dotenv==1.0.0
|
7 |
+
sqlalchemy[asyncio]
|
8 |
+
chainlit==1.0.200
|
9 |
+
langchain==0.1.4
|
10 |
+
langchain-community==0.0.16
|
11 |
+
langchain-openai==0.0.5
|
12 |
+
asyncpg
|
13 |
+
db-dtypes==1.2.0
|
14 |
+
tabulate==0.9.0
|
15 |
+
chromadb==0.4.22
|