Spaces:
Sleeping
Sleeping
Create model_api.py
Browse files- server/model_api.py +153 -0
server/model_api.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelWithLMHead, AutoModel
|
5 |
+
|
6 |
+
from transformer_formatter import TransformerOutputFormatter
|
7 |
+
from utils.f import delegates, pick, memoize
|
8 |
+
|
9 |
+
@memoize
|
10 |
+
def get_details(mname):
|
11 |
+
return ModelDetails(mname)
|
12 |
+
|
13 |
+
def get_model_tok(mname):
|
14 |
+
conf = AutoConfig.from_pretrained(mname, output_attentions=True, output_past=False)
|
15 |
+
tok = AutoTokenizer.from_pretrained(mname, config=conf)
|
16 |
+
model = AutoModelWithLMHead.from_pretrained(mname, config=conf)
|
17 |
+
return model, tok
|
18 |
+
|
19 |
+
class ModelDetails:
|
20 |
+
"""Wraps a transformer model and tokenizer to prepare inputs to the frontend visualization"""
|
21 |
+
def __init__(self, mname):
|
22 |
+
self.mname = mname
|
23 |
+
self.model, self.tok = get_model_tok(self.mname)
|
24 |
+
self.model.eval()
|
25 |
+
self.config = self.model.config
|
26 |
+
|
27 |
+
def from_sentence(self, sentence: str) -> TransformerOutputFormatter:
|
28 |
+
"""Get attentions and word probabilities from a sentence. Special tokens are automatically added if a sentence is passed.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
sentence: The input sentence to tokenize and analyze.
|
32 |
+
"""
|
33 |
+
tokens = self.tok.tokenize(sentence)
|
34 |
+
|
35 |
+
return self.from_tokens(tokens, sentence, add_special_tokens=True)
|
36 |
+
|
37 |
+
def from_tokens(
|
38 |
+
self, tokens: List[str], orig_sentence:str, add_special_tokens:bool=False, mask_attentions:bool=False, topk:int=5
|
39 |
+
) -> TransformerOutputFormatter:
|
40 |
+
"""Get formatted attention and predictions from a list of tokens.
|
41 |
+
Args:
|
42 |
+
tokens: Tokens to analyze
|
43 |
+
orig_sentence: The sentence the tokens came from (needed to help organize the output)
|
44 |
+
add_special_tokens: Whether to add special tokens like CLS / <|endoftext|> to the tokens.
|
45 |
+
If False, assume the tokens already have the special tokens
|
46 |
+
mask_attentions: If True, do not pay attention to attention patterns to special tokens through the model.
|
47 |
+
topk: How many top predictions to report
|
48 |
+
"""
|
49 |
+
ids = self.tok.convert_tokens_to_ids(tokens)
|
50 |
+
|
51 |
+
# For GPT2, add the beginning of sentence token to the input. Note that this will work on all models but XLM
|
52 |
+
bost = self.tok.bos_token_id
|
53 |
+
clst = self.tok.cls_token_id
|
54 |
+
sept = self.tok.sep_token_id
|
55 |
+
if (bost is not None) and (bost != clst)and add_special_tokens:
|
56 |
+
ids.insert(0, bost)
|
57 |
+
|
58 |
+
inputs = self.tok.prepare_for_model(ids, add_special_tokens=add_special_tokens, return_tensors="pt")
|
59 |
+
parsed_input = self.parse_inputs(inputs, mask_attentions=mask_attentions)
|
60 |
+
output = self.model(parsed_input['input_ids'], attention_mask=parsed_input['attention_mask'])
|
61 |
+
|
62 |
+
logits, atts = self.choose_logits_att(output)
|
63 |
+
words, probs = self.logits2words(logits, topk)
|
64 |
+
tokens = self.view_ids(inputs["input_ids"])
|
65 |
+
|
66 |
+
formatted_output = TransformerOutputFormatter(
|
67 |
+
orig_sentence,
|
68 |
+
tokens,
|
69 |
+
inputs["special_tokens_mask"],
|
70 |
+
atts,
|
71 |
+
words,
|
72 |
+
probs.tolist(),
|
73 |
+
self.config
|
74 |
+
)
|
75 |
+
|
76 |
+
return formatted_output
|
77 |
+
|
78 |
+
def choose_logits_att(self, out:Tuple) -> Tuple:
|
79 |
+
"""Select from the model's output the logits and the attentions, switching on model name
|
80 |
+
|
81 |
+
Args:
|
82 |
+
out: Output from the model's forward pass
|
83 |
+
Returns:
|
84 |
+
(logits: tensor((bs, N)), attentions: Tuple[tensor(())])
|
85 |
+
"""
|
86 |
+
if 't5' in self.mname:
|
87 |
+
logits, _, atts = out
|
88 |
+
else:
|
89 |
+
logits, atts = out
|
90 |
+
|
91 |
+
return logits, atts
|
92 |
+
|
93 |
+
def logits2words(self, logits, topk):
|
94 |
+
"""Convert logit probabilities into words from the tokenizer's vocabulary.
|
95 |
+
|
96 |
+
"""
|
97 |
+
probs, idxs = torch.topk(torch.softmax(logits.squeeze(0), 1), topk)
|
98 |
+
words = [self.tok.convert_ids_to_tokens(i) for i in idxs]
|
99 |
+
return words, probs
|
100 |
+
|
101 |
+
def view_ids(self, ids: Union[List[int], torch.Tensor]) -> List[str]:
|
102 |
+
"""View what the tokenizer thinks certain ids are for a single input"""
|
103 |
+
if type(ids) == torch.Tensor:
|
104 |
+
# Remove batch dimension
|
105 |
+
ids = ids.squeeze(0).tolist()
|
106 |
+
|
107 |
+
out = self.tok.convert_ids_to_tokens(ids)
|
108 |
+
return out
|
109 |
+
|
110 |
+
def parse_inputs(self, inputs, mask_attentions=False):
|
111 |
+
"""Parse the output from `tokenizer.prepare_for_model` to the desired attention mask from special tokens
|
112 |
+
Args:
|
113 |
+
- inputs: The output of `tokenizer.prepare_for_model`.
|
114 |
+
A dict with keys: {'special_token_mask', 'token_type_ids', 'input_ids'}
|
115 |
+
- mask_attentions: Flag indicating whether to mask the attentions or not
|
116 |
+
Returns:
|
117 |
+
Dict with keys: {'input_ids', 'token_type_ids', 'attention_mask', 'special_tokens_mask'}
|
118 |
+
Usage:
|
119 |
+
```
|
120 |
+
s = "test sentence"
|
121 |
+
# from raw sentence to tokens
|
122 |
+
tokens = tokenizer.tokenize(s)
|
123 |
+
# From tokens to ids
|
124 |
+
ids = tokenizer.convert_tokens_to_ids(tokens)
|
125 |
+
# From ids to input
|
126 |
+
inputs = tokenizer.prepare_for_model(ids, return_tensors='pt')
|
127 |
+
# Parse the input. Optionally mask the special tokens from the analysis.
|
128 |
+
parsed_input = parse_inputs(inputs)
|
129 |
+
# Run the model, pick from this output whatever inputs you want
|
130 |
+
from utils.f import pick
|
131 |
+
out = model(**pick(['input_ids'], parse_inputs(inputs)))
|
132 |
+
```
|
133 |
+
"""
|
134 |
+
|
135 |
+
out = inputs.copy()
|
136 |
+
|
137 |
+
# DEFINE SPECIAL TOKENS MASK
|
138 |
+
if "special_tokens_mask" not in inputs.keys():
|
139 |
+
special_tokens = set([self.tok.unk_token_id, self.tok.cls_token_id, self.tok.sep_token_id, self.tok.bos_token_id, self.tok.eos_token_id, self.tok.pad_token_id])
|
140 |
+
in_ids = inputs['input_ids'][0]
|
141 |
+
special_tok_mask = [1 if int(i) in special_tokens else 0 for i in in_ids]
|
142 |
+
inputs['special_tokens_mask'] = special_tok_mask
|
143 |
+
|
144 |
+
if mask_attentions:
|
145 |
+
out["attention_mask"] = torch.tensor(
|
146 |
+
[int(not i) for i in inputs.get("special_tokens_mask")]
|
147 |
+
).unsqueeze(0)
|
148 |
+
else:
|
149 |
+
out["attention_mask"] = torch.tensor(
|
150 |
+
[1 for i in inputs.get("special_tokens_mask")]
|
151 |
+
).unsqueeze(0)
|
152 |
+
|
153 |
+
return out
|