Spaces:
Running
Running
Create token_processing.py
Browse files
server/utils/token_processing.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from transformers.tokenization_bert import BertTokenizer
|
3 |
+
from .f import flatten_, assoc, memoize, GetAttr
|
4 |
+
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
def fix_byte_spaces(toks: List[str]) -> List[str]:
|
8 |
+
return [t.replace("\u0120", " ").replace("\u010A", "\\n") for t in toks]
|
9 |
+
|
10 |
+
@memoize
|
11 |
+
def get_bpe(bpe_pretrained_name_or_path):
|
12 |
+
return BertTokenizer.from_pretrained(bpe_pretrained_name_or_path)
|
13 |
+
|
14 |
+
# [String] -> [String]
|
15 |
+
def remove_CLS_SEP(toks):
|
16 |
+
return [t for t in toks if t not in set(["[CLS]", "[SEP]"])]
|
17 |
+
|
18 |
+
# torch.Tensor -> np.Array
|
19 |
+
def process_hidden_tensors(t):
|
20 |
+
"""Embeddings are returned from the BERT model in a non-ideal embedding shape:
|
21 |
+
- unnecessary batch dimension
|
22 |
+
- Undesired second sentence "[SEP]".
|
23 |
+
|
24 |
+
Drop the unnecessary information and just return what we need for the first sentence
|
25 |
+
"""
|
26 |
+
# Drop unnecessary batch dim and second sent
|
27 |
+
t = t.squeeze(0)[:-1]
|
28 |
+
|
29 |
+
# Drop second sentence sep ??
|
30 |
+
t = t[1:-1]
|
31 |
+
|
32 |
+
# Convert to numpy
|
33 |
+
return t.data.numpy()
|
34 |
+
|
35 |
+
|
36 |
+
# np.Array -> np.Array
|
37 |
+
def normalize(a):
|
38 |
+
"""Divide each head by its norm"""
|
39 |
+
norms = np.linalg.norm(a, axis=-1, keepdims=True)
|
40 |
+
return a / norms
|
41 |
+
|
42 |
+
|
43 |
+
# np.Array:<a,b,c,d> -> np.Array<a,b,c*d>
|
44 |
+
def reshape(a):
|
45 |
+
"""Combine the last two dimensions of a numpy array"""
|
46 |
+
all_head_size = a.shape[-2] * a.shape[-1]
|
47 |
+
new_shape = a.shape[:-2] + (all_head_size,)
|
48 |
+
return a.reshape(new_shape)
|