Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
|
|
| 5 |
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
|
| 6 |
from diffusers.utils import export_to_video, load_video
|
| 7 |
|
| 8 |
-
pipe = LTXConditionPipeline.from_pretrained("
|
| 9 |
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16)
|
| 10 |
pipe.to("cuda")
|
| 11 |
pipe_upsample.to("cuda")
|
|
@@ -20,9 +20,68 @@ def round_to_nearest_resolution_acceptable_by_vae(height, width):
|
|
| 20 |
@spaces.GPU
|
| 21 |
def generate(prompt,
|
| 22 |
negative_prompt,
|
|
|
|
| 23 |
steps,
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
css="""
|
|
@@ -64,8 +123,9 @@ with gr.Blocks(css=css, theme=gr.themes.Ocean()) as demo:
|
|
| 64 |
randomize_seed = gr.Checkbox(label="randomize seed")
|
| 65 |
with gr.Row():
|
| 66 |
steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1)
|
| 67 |
-
num_frames = gr.Slider(label="# frames", minimum=1, maximum=
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
|
|
|
|
| 5 |
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
|
| 6 |
from diffusers.utils import export_to_video, load_video
|
| 7 |
|
| 8 |
+
pipe = LTXConditionPipeline.from_pretrained("linoyts/LTX-Video-0.9.7-distilled-diffusers", torch_dtype=torch.bfloat16)
|
| 9 |
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.7-Latent-Spatial-Upsampler-diffusers", vae=pipe.vae, torch_dtype=torch.bfloat16)
|
| 10 |
pipe.to("cuda")
|
| 11 |
pipe_upsample.to("cuda")
|
|
|
|
| 20 |
@spaces.GPU
|
| 21 |
def generate(prompt,
|
| 22 |
negative_prompt,
|
| 23 |
+
image,
|
| 24 |
steps,
|
| 25 |
+
num_frames,
|
| 26 |
+
seed,
|
| 27 |
+
randomize_seed):
|
| 28 |
+
|
| 29 |
+
expected_height, expected_width = 768, 1152
|
| 30 |
+
downscale_factor = 2 / 3
|
| 31 |
+
|
| 32 |
+
if image is not None:
|
| 33 |
+
condition1 = LTXVideoCondition(video=image, frame_index=0)
|
| 34 |
+
else:
|
| 35 |
+
condition1 = None
|
| 36 |
+
|
| 37 |
+
# Part 1. Generate video at smaller resolution
|
| 38 |
+
# Text-only conditioning is also supported without the need to pass `conditions`
|
| 39 |
+
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
|
| 40 |
+
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width)
|
| 41 |
+
|
| 42 |
+
latents = pipe(
|
| 43 |
+
conditions=condition1,
|
| 44 |
+
prompt=prompt,
|
| 45 |
+
negative_prompt=negative_prompt,
|
| 46 |
+
width=downscaled_width,
|
| 47 |
+
height=downscaled_height,
|
| 48 |
+
num_frames=num_frames,
|
| 49 |
+
num_inference_steps=steps,
|
| 50 |
+
decode_timestep = 0.05,
|
| 51 |
+
decode_noise_scale = 0.025,
|
| 52 |
+
generator=torch.Generator().manual_seed(seed),
|
| 53 |
+
output_type="latent",
|
| 54 |
+
).frames
|
| 55 |
+
|
| 56 |
+
# Part 2. Upscale generated video using latent upsampler with fewer inference steps
|
| 57 |
+
# The available latent upsampler upscales the height/width by 2x
|
| 58 |
+
upscaled_height, upscaled_width = downscaled_height * 2, downscaled_width * 2
|
| 59 |
+
upscaled_latents = pipe_upsample(
|
| 60 |
+
latents=latents,
|
| 61 |
+
output_type="latent"
|
| 62 |
+
).frames
|
| 63 |
+
|
| 64 |
+
# Part 3. Denoise the upscaled video with few steps to improve texture (optional, but recommended)
|
| 65 |
+
video = pipe(
|
| 66 |
+
conditions=condition1,
|
| 67 |
+
prompt=prompt,
|
| 68 |
+
negative_prompt=negative_prompt,
|
| 69 |
+
width=upscaled_width,
|
| 70 |
+
height=upscaled_height,
|
| 71 |
+
num_frames=num_frames,
|
| 72 |
+
denoise_strength=0.4, # Effectively, 4 inference steps out of 10
|
| 73 |
+
num_inference_steps=10,
|
| 74 |
+
latents=upscaled_latents,
|
| 75 |
+
decode_timestep=0.05,
|
| 76 |
+
image_cond_noise_scale=0.025,
|
| 77 |
+
generator=torch.Generator().manual_seed(seed),
|
| 78 |
+
output_type="pil",
|
| 79 |
+
).frames[0]
|
| 80 |
+
|
| 81 |
+
# Part 4. Downscale the video to the expected resolution
|
| 82 |
+
video = [frame.resize((expected_width, expected_height)) for frame in video]
|
| 83 |
+
return video
|
| 84 |
+
|
| 85 |
|
| 86 |
|
| 87 |
css="""
|
|
|
|
| 123 |
randomize_seed = gr.Checkbox(label="randomize seed")
|
| 124 |
with gr.Row():
|
| 125 |
steps = gr.Slider(label="Steps", minimum=1, maximum=30, value=8, step=1)
|
| 126 |
+
num_frames = gr.Slider(label="# frames", minimum=1, maximum=200, value=161, step=1)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
|
| 130 |
|
| 131 |
|