Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,22 @@ import concurrent.futures
|
|
5 |
import json
|
6 |
import os
|
7 |
import arxiv
|
8 |
-
from docx import Document
|
9 |
from PIL import Image
|
10 |
import io
|
11 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Set environment variables for Tavily API
|
14 |
os.environ["TAVILY_API_KEY"] = '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'
|
@@ -17,6 +29,8 @@ os.environ["TAVILY_API_KEY"] = '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'
|
|
17 |
client_1 = Mistral(api_key='eLES5HrVqduOE1OSWG6C5XyEUeR7qpXQ')
|
18 |
client_2 = Mistral(api_key='VPqG8sCy3JX5zFkpdiZ7bRSnTLKwngFJ')
|
19 |
client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')
|
|
|
|
|
20 |
|
21 |
# Function to encode images in base64
|
22 |
def encode_image_bytes(image_bytes):
|
@@ -65,9 +79,7 @@ def setup_search(question):
|
|
65 |
def extract_key_topics(content, images=[]):
|
66 |
prompt = f"""
|
67 |
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
|
68 |
-
|
69 |
```{content}```
|
70 |
-
|
71 |
LIST IN ENGLISH:
|
72 |
-
|
73 |
"""
|
@@ -78,6 +90,73 @@ def extract_key_topics(content, images=[]):
|
|
78 |
)
|
79 |
return response.choices[0].message.content
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def search_relevant_articles_arxiv(key_topics, max_articles=100):
|
82 |
articles_by_topic = {}
|
83 |
final_topics = []
|
@@ -116,13 +195,20 @@ def search_relevant_articles_arxiv(key_topics, max_articles=100):
|
|
116 |
|
117 |
return articles_by_topic, list(set(final_topics))
|
118 |
|
119 |
-
|
120 |
def init(content, images=[]):
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
# Summarization function
|
128 |
def process_article_for_summary(text, images=[], compression_percentage=30):
|
@@ -130,11 +216,9 @@ def process_article_for_summary(text, images=[], compression_percentage=30):
|
|
130 |
You are a commentator.
|
131 |
# article:
|
132 |
{text}
|
133 |
-
|
134 |
# Instructions:
|
135 |
## Summarize IN RUSSIAN:
|
136 |
In clear and concise language, summarize the key points and themes presented in the article by cutting it by {compression_percentage} percent in the markdown format.
|
137 |
-
|
138 |
"""
|
139 |
|
140 |
if len(images) >= 8 :
|
@@ -147,6 +231,76 @@ def process_article_for_summary(text, images=[], compression_percentage=30):
|
|
147 |
)
|
148 |
return response.choices[0].message.content
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
# Question answering function
|
151 |
def ask_question_to_mistral(text, question, images=[]):
|
152 |
prompt = f"Answer the following question without mentioning it or repeating the original text on which the question is asked in style markdown.IN RUSSIAN:\nQuestion: {question}\n\nText:\n{text}"
|
@@ -170,19 +324,100 @@ def ask_question_to_mistral(text, question, images=[]):
|
|
170 |
)
|
171 |
return response.choices[0].message.content
|
172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
# Gradio interface
|
174 |
def gradio_interface(text_input, images_base64, task, question, compression_percentage):
|
175 |
text, images = process_input(text_input, images_base64)
|
176 |
|
177 |
-
topics, articles_json = init(text, images)
|
178 |
-
|
179 |
if task == "Summarization":
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
elif task == "Question Answering":
|
|
|
183 |
if question:
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
else:
|
187 |
return {"Topics": topics, "Answer": "No question provided.", "Articles": articles_json}
|
188 |
|
@@ -205,4 +440,4 @@ with gr.Blocks() as demo:
|
|
205 |
submit_button = gr.Button("Submit")
|
206 |
submit_button.click(gradio_interface, [text_input, images_base64, task_choice, question_input, compression_input], result_output)
|
207 |
|
208 |
-
demo.launch()
|
|
|
5 |
import json
|
6 |
import os
|
7 |
import arxiv
|
|
|
8 |
from PIL import Image
|
9 |
import io
|
10 |
import base64
|
11 |
+
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
|
12 |
+
from langchain.text_splitter import CharacterTextSplitter
|
13 |
+
from langchain_mistralai import ChatMistralAI
|
14 |
+
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
15 |
+
from langchain.chains.llm import LLMChain
|
16 |
+
from langchain_core.prompts import PromptTemplate
|
17 |
+
from transformers import AutoTokenizer
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("mistral-community/pixtral-12b")
|
19 |
+
|
20 |
+
def count_tokens_in_text(text):
|
21 |
+
tokens = tokenizer(text, return_tensors="pt", truncation=False, add_special_tokens=True)
|
22 |
+
return len(tokens["input_ids"][0])
|
23 |
+
|
24 |
|
25 |
# Set environment variables for Tavily API
|
26 |
os.environ["TAVILY_API_KEY"] = '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'
|
|
|
29 |
client_1 = Mistral(api_key='eLES5HrVqduOE1OSWG6C5XyEUeR7qpXQ')
|
30 |
client_2 = Mistral(api_key='VPqG8sCy3JX5zFkpdiZ7bRSnTLKwngFJ')
|
31 |
client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')
|
32 |
+
api_key_4 = 'lCZWDjyQSEc5gJsATEcKjP9cCjWsB7lg'
|
33 |
+
client_4 = ChatMistralAI(api_key=api_key_4, model="pixtral-12b-2409")
|
34 |
|
35 |
# Function to encode images in base64
|
36 |
def encode_image_bytes(image_bytes):
|
|
|
79 |
def extract_key_topics(content, images=[]):
|
80 |
prompt = f"""
|
81 |
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
|
|
|
82 |
```{content}```
|
|
|
83 |
LIST IN ENGLISH:
|
84 |
-
|
85 |
"""
|
|
|
90 |
)
|
91 |
return response.choices[0].message.content
|
92 |
|
93 |
+
def extract_key_topics_with_large_text(content, images=[]):
|
94 |
+
# Map prompt template for extracting key themes
|
95 |
+
map_template = f"""
|
96 |
+
Текст: {{docs}}
|
97 |
+
Изображения: {{images}}
|
98 |
+
|
99 |
+
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
|
100 |
+
LIST IN ENGLISH:
|
101 |
+
-
|
102 |
+
|
103 |
+
:"""
|
104 |
+
|
105 |
+
map_prompt = PromptTemplate.from_template(map_template)
|
106 |
+
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
|
107 |
+
|
108 |
+
# Reduce prompt template to further refine and extract key themes
|
109 |
+
reduce_template = f"""Следующий текст состоит из нескольких кратких итогов:
|
110 |
+
{{docs}}
|
111 |
+
|
112 |
+
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
|
113 |
+
LIST IN ENGLISH:
|
114 |
+
-
|
115 |
+
|
116 |
+
:"""
|
117 |
+
|
118 |
+
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
119 |
+
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
|
120 |
+
|
121 |
+
# Combine documents chain for Reduce step
|
122 |
+
combine_documents_chain = StuffDocumentsChain(
|
123 |
+
llm_chain=reduce_chain, document_variable_name="docs"
|
124 |
+
)
|
125 |
+
|
126 |
+
# ReduceDocumentsChain configuration
|
127 |
+
reduce_documents_chain = ReduceDocumentsChain(
|
128 |
+
combine_documents_chain=combine_documents_chain,
|
129 |
+
collapse_documents_chain=combine_documents_chain,
|
130 |
+
token_max=128000,
|
131 |
+
)
|
132 |
+
|
133 |
+
# MapReduceDocumentsChain combining Map and Reduce
|
134 |
+
map_reduce_chain = MapReduceDocumentsChain(
|
135 |
+
llm_chain=map_chain,
|
136 |
+
reduce_documents_chain=reduce_documents_chain,
|
137 |
+
document_variable_name="docs",
|
138 |
+
return_intermediate_steps=False,
|
139 |
+
)
|
140 |
+
|
141 |
+
# Text splitter configuration
|
142 |
+
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
|
143 |
+
tokenizer,
|
144 |
+
chunk_size=100000,
|
145 |
+
chunk_overlap=14000,
|
146 |
+
)
|
147 |
+
|
148 |
+
# Split the text into documents
|
149 |
+
split_docs = text_splitter.create_documents([content])
|
150 |
+
|
151 |
+
# Include image descriptions (optional, if required by the prompt)
|
152 |
+
image_descriptions = "\n".join(
|
153 |
+
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
|
154 |
+
)
|
155 |
+
|
156 |
+
# Run the summarization chain to extract key themes
|
157 |
+
key_topics = map_reduce_chain.run({"input_documents": split_docs, "images": image_descriptions})
|
158 |
+
return key_topics
|
159 |
+
|
160 |
def search_relevant_articles_arxiv(key_topics, max_articles=100):
|
161 |
articles_by_topic = {}
|
162 |
final_topics = []
|
|
|
195 |
|
196 |
return articles_by_topic, list(set(final_topics))
|
197 |
|
198 |
+
|
199 |
def init(content, images=[]):
|
200 |
+
if count_tokens_in_text(text=content) < 128_000:
|
201 |
+
key_topics = extract_key_topics(content, images)
|
202 |
+
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
|
203 |
+
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
|
204 |
+
result_json = json.dumps(articles_by_topic, indent=4)
|
205 |
+
return final_topics, result_json
|
206 |
+
else:
|
207 |
+
key_topics = extract_key_topics_with_large_text(content, images)
|
208 |
+
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
|
209 |
+
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
|
210 |
+
result_json = json.dumps(articles_by_topic, indent=4)
|
211 |
+
return final_topics, result_json
|
212 |
|
213 |
# Summarization function
|
214 |
def process_article_for_summary(text, images=[], compression_percentage=30):
|
|
|
216 |
You are a commentator.
|
217 |
# article:
|
218 |
{text}
|
|
|
219 |
# Instructions:
|
220 |
## Summarize IN RUSSIAN:
|
221 |
In clear and concise language, summarize the key points and themes presented in the article by cutting it by {compression_percentage} percent in the markdown format.
|
|
|
222 |
"""
|
223 |
|
224 |
if len(images) >= 8 :
|
|
|
231 |
)
|
232 |
return response.choices[0].message.content
|
233 |
|
234 |
+
def process_large_article_for_summary(text, images=[], compression_percentage=30):
|
235 |
+
# Map prompt template
|
236 |
+
map_template = f"""Следующий текст состоит из текста и изображений:
|
237 |
+
Текст: {{docs}}
|
238 |
+
Изображения: {{images}}
|
239 |
+
|
240 |
+
На основе приведенного материала, выполните сжатие текста, выделяя основные темы и важные моменты.
|
241 |
+
Уровень сжатия: {compression_percentage}%.
|
242 |
+
Ответ предоставьте на русском языке в формате Markdown.
|
243 |
+
|
244 |
+
Полезный ответ:"""
|
245 |
+
|
246 |
+
map_prompt = PromptTemplate.from_template(map_template)
|
247 |
+
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
|
248 |
+
|
249 |
+
# Reduce prompt template
|
250 |
+
reduce_template = f"""Следующий текст состоит из нескольких кратких итогов:
|
251 |
+
{{docs}}
|
252 |
+
|
253 |
+
На основе этих кратких итогов, выполните финальное сжатие текста, объединяя основные темы и ключевые моменты.
|
254 |
+
Уровень сжатия: {compression_percentage}%.
|
255 |
+
Результат предоставьте на русском языке в формате Markdown.
|
256 |
+
|
257 |
+
Полезный ответ:"""
|
258 |
+
|
259 |
+
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
260 |
+
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
|
261 |
+
|
262 |
+
# Combine documents chain for Reduce step
|
263 |
+
combine_documents_chain = StuffDocumentsChain(
|
264 |
+
llm_chain=reduce_chain, document_variable_name="docs"
|
265 |
+
)
|
266 |
+
|
267 |
+
# ReduceDocumentsChain configuration
|
268 |
+
reduce_documents_chain = ReduceDocumentsChain(
|
269 |
+
combine_documents_chain=combine_documents_chain,
|
270 |
+
collapse_documents_chain=combine_documents_chain,
|
271 |
+
token_max=128000,
|
272 |
+
)
|
273 |
+
|
274 |
+
# MapReduceDocumentsChain combining Map and Reduce
|
275 |
+
map_reduce_chain = MapReduceDocumentsChain(
|
276 |
+
llm_chain=map_chain,
|
277 |
+
reduce_documents_chain=reduce_documents_chain,
|
278 |
+
document_variable_name="docs",
|
279 |
+
return_intermediate_steps=False,
|
280 |
+
)
|
281 |
+
|
282 |
+
# Text splitter configuration
|
283 |
+
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
|
284 |
+
tokenizer,
|
285 |
+
chunk_size=100000,
|
286 |
+
chunk_overlap=14000,
|
287 |
+
)
|
288 |
+
|
289 |
+
# Split the text into documents
|
290 |
+
split_docs = text_splitter.create_documents([text])
|
291 |
+
# Include image descriptions
|
292 |
+
image_descriptions = "\n".join(
|
293 |
+
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
|
294 |
+
)
|
295 |
+
|
296 |
+
# Run the summarization chain
|
297 |
+
|
298 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
299 |
+
extract_future = executor.submit(init, text, images)
|
300 |
+
summary = map_reduce_chain.run({"input_documents": split_docs, "images": image_descriptions})
|
301 |
+
key_topics , result_article_json = extract_future.result()
|
302 |
+
return summary, key_topics, result_article_json
|
303 |
+
|
304 |
# Question answering function
|
305 |
def ask_question_to_mistral(text, question, images=[]):
|
306 |
prompt = f"Answer the following question without mentioning it or repeating the original text on which the question is asked in style markdown.IN RUSSIAN:\nQuestion: {question}\n\nText:\n{text}"
|
|
|
324 |
)
|
325 |
return response.choices[0].message.content
|
326 |
|
327 |
+
def ask_question_to_mistral_with_large_text(text, question, images=[]):
|
328 |
+
# Prompts for QA
|
329 |
+
map_template = """С��едующий текст содержит статью/произведение:
|
330 |
+
Текст: {{docs}}
|
331 |
+
Изображения: {{images}}
|
332 |
+
На основе приведенного текста, ответьте на следующий вопрос:
|
333 |
+
|
334 |
+
Вопрос: {question}
|
335 |
+
|
336 |
+
Ответ должен быть точным. Пожалуйста, ответьте на русском языке в формате Markdown.
|
337 |
+
|
338 |
+
Полезный ответ:"""
|
339 |
+
|
340 |
+
reduce_template = """Следующий текст содержит несколько кратких ответов на вопрос:
|
341 |
+
{{docs}}
|
342 |
+
|
343 |
+
Объедините их в финальный ответ. Ответ предоставьте на русском языке в формате Markdown.
|
344 |
+
|
345 |
+
Полезный ответ:"""
|
346 |
+
|
347 |
+
map_prompt = PromptTemplate.from_template(map_template)
|
348 |
+
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
|
349 |
+
|
350 |
+
reduce_prompt = PromptTemplate.from_template(reduce_template)
|
351 |
+
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
|
352 |
+
|
353 |
+
# Combine documents chain for Reduce step
|
354 |
+
combine_documents_chain = StuffDocumentsChain(
|
355 |
+
llm_chain=reduce_chain, document_variable_name="docs"
|
356 |
+
)
|
357 |
+
|
358 |
+
# ReduceDocumentsChain configuration
|
359 |
+
reduce_documents_chain = ReduceDocumentsChain(
|
360 |
+
combine_documents_chain=combine_documents_chain,
|
361 |
+
collapse_documents_chain=combine_documents_chain,
|
362 |
+
token_max=128000,
|
363 |
+
)
|
364 |
+
|
365 |
+
# MapReduceDocumentsChain combining Map and Reduce
|
366 |
+
map_reduce_chain = MapReduceDocumentsChain(
|
367 |
+
llm_chain=map_chain,
|
368 |
+
reduce_documents_chain=reduce_documents_chain,
|
369 |
+
document_variable_name="docs",
|
370 |
+
return_intermediate_steps=False,
|
371 |
+
)
|
372 |
+
|
373 |
+
# Text splitter configuration
|
374 |
+
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
|
375 |
+
tokenizer,
|
376 |
+
chunk_size=100000,
|
377 |
+
chunk_overlap=14000,
|
378 |
+
)
|
379 |
+
|
380 |
+
# Split the text into documents
|
381 |
+
split_docs = text_splitter.create_documents([text])
|
382 |
+
|
383 |
+
# Include image descriptions
|
384 |
+
image_descriptions = "\n".join(
|
385 |
+
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
|
386 |
+
)
|
387 |
+
|
388 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
389 |
+
extract_future = executor.submit(init, text, images)
|
390 |
+
summary = map_reduce_chain.run({"input_documents": split_docs, "question": question , "images": image_descriptions})
|
391 |
+
key_topics , result_article_json = extract_future.result()
|
392 |
+
return summary, key_topics, result_article_json
|
393 |
+
|
394 |
+
|
395 |
# Gradio interface
|
396 |
def gradio_interface(text_input, images_base64, task, question, compression_percentage):
|
397 |
text, images = process_input(text_input, images_base64)
|
398 |
|
|
|
|
|
399 |
if task == "Summarization":
|
400 |
+
|
401 |
+
if count_tokens_in_text(text=text) < 128_000:
|
402 |
+
topics, articles_json = init(text, images)
|
403 |
+
summary = process_article_for_summary(text, images, compression_percentage)
|
404 |
+
return {"Topics": topics, "Summary": summary, "Articles": articles_json}
|
405 |
+
|
406 |
+
else:
|
407 |
+
summary , key_topics, result_article_json = process_large_article_for_summary(text, images, compression_percentage)
|
408 |
+
return {"Topics": key_topics, "Summary": summary, "Articles": result_article_json}
|
409 |
+
|
410 |
elif task == "Question Answering":
|
411 |
+
|
412 |
if question:
|
413 |
+
|
414 |
+
if count_tokens_in_text(text=text) < 128_000:
|
415 |
+
topics, articles_json = init(text, images)
|
416 |
+
answer = ask_question_to_mistral(text, question, images)
|
417 |
+
return {"Topics": topics, "Answer": answer, "Articles": articles_json}
|
418 |
+
else:
|
419 |
+
summary , key_topics, result_article_json = ask_question_to_mistral_with_large_text(text, question, images)
|
420 |
+
return {"Topics": key_topics, "Answer": answer, "Articles": result_article_json}
|
421 |
else:
|
422 |
return {"Topics": topics, "Answer": "No question provided.", "Articles": articles_json}
|
423 |
|
|
|
440 |
submit_button = gr.Button("Submit")
|
441 |
submit_button.click(gradio_interface, [text_input, images_base64, task_choice, question_input, compression_input], result_output)
|
442 |
|
443 |
+
demo.launch()
|