Spaces:
Running
Running
# import streamlit as st | |
# from transformers import SeamlessM4Tv2Model, AutoProcessor | |
# import torch | |
# import numpy as np | |
# from scipy.io.wavfile import write | |
# import re | |
# from io import BytesIO | |
# # Load the processor and model | |
# processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large") | |
# model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# model.to(device) | |
# # Number to words function for Uzbek | |
# number_words = { | |
# 0: "nol", 1: "bir", 2: "ikki", 3: "uch", 4: "to'rt", 5: "besh", 6: "olti", 7: "yetti", 8: "sakkiz", 9: "to'qqiz", | |
# 10: "o'n", 11: "o'n bir", 12: "o'n ikki", 13: "o'n uch", 14: "o'n to'rt", 15: "o'n besh", 16: "o'n oltı", 17: "o'n yetti", | |
# 18: "o'n sakkiz", 19: "o'n toqqiz", 20: "yigirma", 30: "o'ttiz", 40: "qirq", 50: "ellik", 60: "oltmish", 70: "yetmish", | |
# 80: "sakson", 90: "to'qson", 100: "yuz", 1000: "ming", 1000000: "million" | |
# } | |
# def number_to_words(number): | |
# if number < 20: | |
# return number_words[number] | |
# elif number < 100: | |
# tens, unit = divmod(number, 10) | |
# return number_words[tens * 10] + (" " + number_words[unit] if unit else "") | |
# elif number < 1000: | |
# hundreds, remainder = divmod(number, 100) | |
# return (number_words[hundreds] + " yuz" if hundreds > 1 else "yuz") + (" " + number_to_words(remainder) if remainder else "") | |
# elif number < 1000000: | |
# thousands, remainder = divmod(number, 1000) | |
# return (number_to_words(thousands) + " ming" if thousands > 1 else "ming") + (" " + number_to_words(remainder) if remainder else "") | |
# elif number < 1000000000: | |
# millions, remainder = divmod(number, 1000000) | |
# return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "") | |
# elif number < 1000000000000: | |
# billions, remainder = divmod(number, 1000000000) | |
# return number_to_words(billions) + " milliard" + (" " + number_to_words(remainder) if remainder else "") | |
# else: | |
# return str(number) | |
# def replace_numbers_with_words(text): | |
# def replace(match): | |
# number = int(match.group()) | |
# return number_to_words(number) | |
# result = re.sub(r'\b\d+\b', replace, text) | |
# return result | |
# # Replacements | |
# replacements = [ | |
# ("bo‘ladi", "bo'ladi"), | |
# ("yog‘ingarchilik", "yog'ingarchilik"), | |
# ] | |
# def cleanup_text(text): | |
# for src, dst in replacements: | |
# text = text.replace(src, dst) | |
# return text | |
# # Streamlit App | |
# st.title("Text-to-Speech using Seamless M4T Model") | |
# # User Input | |
# user_input = st.text_area("Enter the text for speech generation", height=200) | |
# # Process the text and generate speech | |
# if st.button("Generate Speech"): | |
# if user_input.strip(): | |
# # Apply text transformations | |
# converted_text = replace_numbers_with_words(user_input) | |
# cleaned_text = cleanup_text(converted_text) | |
# # Process input for model | |
# inputs = processor(text=cleaned_text, src_lang="uzn", return_tensors="pt").to(device) | |
# # Generate audio from text | |
# audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze() | |
# # Save to BytesIO | |
# audio_io = BytesIO() | |
# write(audio_io, 16000, audio_array_from_text.astype(np.float32)) | |
# audio_io.seek(0) | |
# # Provide audio for playback | |
# st.audio(audio_io, format='audio/wav') | |
# else: | |
# st.warning("Please enter some text to generate speech.") | |
import streamlit as st | |
from transformers import SeamlessM4TTokenizer, SeamlessM4Tv2Model | |
import torch | |
import numpy as np | |
from scipy.io.wavfile import write | |
from io import BytesIO | |
# Load the tokenizer and model | |
# tokenizer = SeamlessM4TTokenizer.from_pretrained("facebook/seamless-m4t-v2-large") | |
# model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large") | |
# Load model directly | |
from transformers import AutoProcessor, AutoModelForTextToSpectrogram | |
processor = AutoProcessor.from_pretrained("Beehzod/speecht5_finetuned_uz_customData") | |
model = AutoModelForTextToSpectrogram.from_pretrained("Beehzod/speecht5_finetuned_uz_customData") | |
# Set the device (CUDA if available, else CPU) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Streamlit title | |
st.title("Text-to-Speech with Seamless M4T Model") | |
# Input text field | |
text = st.text_area("Enter text for audio generation") | |
# Button to generate audio | |
if st.button("Generate Audio"): | |
if text: | |
# Preprocess the text and convert to tensor | |
inputs = tokenizer(text=text, src_lang="uzn", return_tensors="pt").to(device) | |
# Generate audio from the model | |
audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze() | |
# Save the audio as a .wav file in memory | |
audio_file = BytesIO() | |
write(audio_file, 16000, audio_array_from_text.astype(np.float32)) | |
audio_file.seek(0) # Reset the pointer to the start of the file | |
# Display the audio player in the Streamlit app | |
st.audio(audio_file, format="audio/wav") | |
else: | |
st.warning("Please enter text to generate audio.") | |