meta-demo-app / utils.py
BecomeAllan
update
58dedb9
raw
history blame
16.1 kB
import torch.nn.functional as F
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import math
import torch
import numpy as np
import pandas as pd
import time
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from sklearn.manifold import TSNE
from copy import deepcopy, copy
import seaborn as sns
import matplotlib.pylab as plt
from pprint import pprint
import shutil
import datetime
import re
import json
from pathlib import Path
from itertools import chain
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
# Fetching pre-trained model and tokenizer
class initializer:
def __init__(self, MODEL_NAME, **config):
self.MODEL_NAME = MODEL_NAME
model = config.get("model")
tokenizer = config.get("tokenizer")
# Model
self.model = model.from_pretrained(MODEL_NAME,
return_dict=True,
output_attentions = False)
# Tokenizer
self.tokenizer = tokenizer.from_pretrained(MODEL_NAME,
do_lower_case = True)
config = {
"model": AutoModelForSequenceClassification,
"tokenizer": AutoTokenizer
}
# Pre-trained model initializer (uncased sciBERT)
initializer_model_scibert = initializer('allenai/scibert_scivocab_uncased', **config)
# initializer_model = initializer('bert-base-uncased', **config)
LABEL_MAP = {'negative': 0,
'not included':0,
'0':0,
0:0,
'excluded':0,
'positive': 1,
'included':1,
'1':1,
1:1,
}
class SLR_DataSet(Dataset):
def __init__(self,
treat_text =None,
etailment_txt =None,
LABEL_MAP= None,
NA = None,
**args):
self.tokenizer = args.get('tokenizer')
self.data = args.get('data').reset_index()
self.max_seq_length = args.get("max_seq_length", 512)
self.INPUT_NAME = args.get("input", 'x')
self.LABEL_NAME = args.get("output", None)
self.treat_text = treat_text
self.etailment_txt = etailment_txt
self.LABEL_MAP=LABEL_MAP
self.NA=NA
if not self.INPUT_NAME in self.data.columns:
self.data[self.INPUT_NAME] = np.nan
# Tokenizing and processing text
def encode_text(self, example):
comment_text = example[self.INPUT_NAME]
if not isinstance(self.treat_text,type(None)):
comment_text = self.treat_text(comment_text)
if example[self.LABEL_NAME] is np.NaN and self.NA != None:
labels = self.NA
elif self.LABEL_NAME != None:
try:
labels = self.LABEL_MAP[example[self.LABEL_NAME]]
except:
labels = -1
# raise TypeError(f"Label passed {example[self.LABEL_NAME]}, is not be in LABEL_MAP")
# print('Not handle LABEL_MAP')
else:
labels = None
if self.etailment_txt:
tensor_data = self.tokenize((comment_text, self.etailment_txt), labels )
else:
tensor_data = self.tokenize((comment_text), labels)
return tensor_data
def tokenize(self, comment_text, labels):
encoding = self.tokenizer.encode_plus(
(comment_text),
add_special_tokens=True,
max_length=self.max_seq_length,
return_token_type_ids=True,
padding="max_length",
truncation=True,
return_attention_mask=True,
return_tensors='pt',
)
if labels != None:
return tuple(((
encoding["input_ids"].flatten(),
encoding["attention_mask"].flatten(),
encoding["token_type_ids"].flatten()
),
torch.tensor([torch.tensor(labels).to(int)])
))
else:
return tuple(((
encoding["input_ids"].flatten(),
encoding["attention_mask"].flatten(),
encoding["token_type_ids"].flatten()
),
torch.empty(0)
))
def __len__(self):
return len(self.data)
# Returning data
def __getitem__(self, index: int):
# print(index)
data_row = self.data.iloc[index]
tensor_data = self.encode_text(data_row)
return tensor_data
from tqdm import tqdm
import gc
from IPython.display import clear_output
from collections import namedtuple
features = namedtuple('features', ['bert', 'feature_map'])
Output = namedtuple('Output', ['loss', 'features', 'logit'])
bert_tuple = namedtuple('bert',['hidden_states', 'attentions'])
class loop():
@classmethod
def train_loop(self, model,device, optimizer, data_train_loader, scheduler = None, data_valid_loader = None,
epochs = 4, print_info = 1000000000, metrics = True, log = None, metrics_print = True):
# Start the model's parameters
table.reset()
model.to(device)
model.train()
# Task epochs (Inner epochs)
for epoch in range(0, epochs):
train_loss, _, out = self.batch_loop(data_train_loader, model, optimizer, device)
if scheduler is not None:
for sched in scheduler:
sched.step()
if (epoch % print_info == 0):
if metrics:
labels = self.map_batch(out[1]).to(int).squeeze()
logits = self.map_batch(out[0]).squeeze()
train_metrics, _ = plot(logits, labels, 0.9)
del labels, logits
train_metrics['Loss'] = torch.Tensor(train_loss).mean().item()
if not isinstance(log,type(None)):
log({"train_"+ x :y for x,y in train_metrics.items()})
table(train_metrics, epoch, "Train")
else:
print("Loss: ", torch.Tensor(train_loss).mean().item())
if data_valid_loader:
valid_loss, _, out = self.eval_loop(data_valid_loader, model, device=device)
if metrics:
global out2
out2 = out
labels = self.map_batch(out[1]).to(int).squeeze()
logits = self.map_batch(out[0]).squeeze()
valid_metrics, _ = plot(logits, labels, 0.9)
valid_metrics['Loss'] = torch.Tensor(valid_loss).mean().item()
del labels, logits
if not isinstance(log,type(None)):
log({"valid_"+ x :y for x,y in train_metrics.items()})
table(valid_metrics, epoch, "Valid")
if metrics_print:
print(table.data_frame().round(4))
else:
print("Valid Loss: ", torch.Tensor(valid_loss).mean().item())
return table.data_frame()
@classmethod
def batch_loop(self, loader, model, optimizer, device):
all_loss = []
features_lst = []
attention_lst = []
logits = []
outputs = []
# Test's Batch loop
for inner_step, batch in enumerate(tqdm(loader,
desc="Train validation | ",
ncols=80)) :
input, output =batch
input = tuple(t.to(device) for t in input)
if isinstance(output, torch.Tensor):
output = output.to(device)
optimizer.zero_grad()
# Predictions
loss, feature, logit = model(input, output)
# compute grads
loss.backward()
# update parameters
optimizer.step()
input = tuple(t.to("cpu") for t in input)
if isinstance(output, torch.Tensor):
output = output.to("cpu")
if isinstance(loss, torch.Tensor):
all_loss.append(loss.to('cpu').detach().clone())
if isinstance(logit, torch.Tensor):
logits.append(logit.to('cpu').detach().clone())
if isinstance(output, torch.Tensor):
outputs.append(output.to('cpu').detach().clone())
if len(feature.feature_map)!=0:
features_lst.append([x.to('cpu').detach().clone() for x in feature.feature_map])
del batch, input, output, loss, feature, logit
# model.to('cpu')
gc.collect()
torch.cuda.empty_cache()
# del model, optimizer
return Output(all_loss, features(None,features_lst), (logits, outputs))
@classmethod
def eval_loop(self, loader, model, device, attention= False, hidden_states=False):
all_loss = []
features_lst = []
attention_lst = []
hidden_states_lst = []
logits = []
outputs = []
model.eval()
with torch.no_grad():
# Test's Batch loop
for inner_step, batch in enumerate(tqdm(loader,
desc="Test validation | ",
ncols=80)) :
input, output =batch
input = tuple(t.to(device) for t in input)
if output.numel()!=0:
# Predictions
loss, feature, logit = model(input, output.to(device),
attention= attention, hidden_states=hidden_states)
else:
# Predictions
loss, feature, logit = model(input,
attention= attention, hidden_states=hidden_states)
input = tuple(t.to("cpu") for t in input)
if isinstance(output, torch.Tensor):
output = output.to("cpu")
if isinstance(loss, torch.Tensor):
all_loss.append(loss.to('cpu').detach().clone())
if isinstance(logit, torch.Tensor):
logits.append(logit.to('cpu').detach().clone())
try:
if not isinstance(feature.bert.attentions, type(None)):
attention_lst.append([x.to('cpu').detach().clone() for x in feature.bert.attentions])
except:
attention_lst = None
try:
if not isinstance(feature.bert.hidden_states, type(None)):
hidden_states_lst.append([x.to('cpu').detach().clone() for x in feature.bert.hidden_states])
except:
hidden_states_lst = None
if isinstance(output, torch.Tensor):
outputs.append(output.to('cpu').detach().clone())
if len(feature.feature_map)!=0:
features_lst.append([x.to('cpu').detach().clone() for x in feature.feature_map])
del batch, input, output, loss, feature, logit
# model.to('cpu')
gc.collect()
torch.cuda.empty_cache()
# del model, optimizer
return Output(all_loss, features(bert_tuple(hidden_states_lst,attention_lst),features_lst), (logits, outputs))
# Process predictions and map the feature_map in tsne
@staticmethod
def map_batch(features):
features = torch.cat(features, dim =0)
# features = np.concatenate(np.array(features,dtype=object)).astype(np.float32)
# features = torch.tensor(features)
return features.detach().clone()
class table:
data = []
index = []
@torch.no_grad()
def __init__(self, data, epochs, name):
self.index.append((epochs, name))
self.data.append(data)
@classmethod
@torch.no_grad()
def data_frame(cls):
clear_output()
index = pd.MultiIndex.from_tuples(cls.index, names=["Epochs", "Data"])
data = pd.DataFrame(cls.data, index=index)
return data
@classmethod
@torch.no_grad()
def reset(cls):
cls.data = []
cls.index = []
from collections import namedtuple
# Declaring namedtuple()
# Pre-trained model
class Encoder(nn.Module):
def __init__(self, layers, freeze_bert, model):
super(Encoder, self).__init__()
# Dummy Parameter
self.dummy_param = nn.Parameter(torch.empty(0))
# Pre-trained model
self.model = deepcopy(model)
# Freezing bert parameters
if freeze_bert:
for param in self.model.parameters():
param.requires_grad = freeze_bert
# Selecting hidden layers of the pre-trained model
old_model_encoder = self.model.encoder.layer
new_model_encoder = nn.ModuleList()
for i in layers:
new_model_encoder.append(old_model_encoder[i])
self.model.encoder.layer = new_model_encoder
# Feed forward
def forward(self, output_attentions=False,output_hidden_states=False, **x):
return self.model(output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
**x)
# Complete model
class SLR_Classifier(nn.Module):
def __init__(self, **data):
super(SLR_Classifier, self).__init__()
# Dummy Parameter
self.dummy_param = nn.Parameter(torch.empty(0))
# Loss function
# Binary Cross Entropy with logits reduced to mean
self.loss_fn = nn.BCEWithLogitsLoss(reduction = 'mean',
pos_weight=torch.FloatTensor([data.get("pos_weight", 2.5)]))
# Pre-trained model
self.Encoder = Encoder(layers = data.get("bert_layers", range(12)),
freeze_bert = data.get("freeze_bert", False),
model = data.get("model"),
)
# Feature Map Layer
self.feature_map = nn.Sequential(
# nn.LayerNorm(self.Encoder.model.config.hidden_size),
nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
nn.Linear(self.Encoder.model.config.hidden_size, 200),
nn.Dropout(data.get("drop", 0.5)),
)
# Classifier Layer
self.classifier = nn.Sequential(
# nn.LayerNorm(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
# nn.BatchNorm1d(self.Encoder.model.config.hidden_size),
# nn.Dropout(data.get("drop", 0.5)),
nn.Tanh(),
nn.Linear(200, 1)
)
# Initializing layer parameters
nn.init.normal_(self.feature_map[1].weight, mean=0, std=0.00001)
nn.init.zeros_(self.feature_map[1].bias)
# Feed forward
def forward(self, input, output=None, attention= False, hidden_states=False):
# input, output = batch
input_ids, attention_mask, token_type_ids = input
predict = self.Encoder(output_attentions=attention,
output_hidden_states=hidden_states,
**{"input_ids":input_ids,
"attention_mask":attention_mask,
"token_type_ids":token_type_ids
})
feature_maped = self.feature_map(predict['pooler_output'])
# print(feature_maped)
logit = self.classifier(feature_maped)
# predict = torch.sigmoid(logit)
if not isinstance(output, type(None)):
# Loss function
loss = self.loss_fn(logit.to(torch.float), output.to(torch.float))
return Output(loss, features(predict, feature_maped), logit)
else:
return Output(None, features(predict, feature_maped), logit)
def fit(self, optimizer, data_train_loader, scheduler = None, data_valid_loader = None,
epochs = 4, print_info = 1000000000, metrics = True, log = None, metrics_print = True):
return loop.train_loop(self,
device = self.dummy_param.device,
optimizer=optimizer,
scheduler= scheduler,
data_train_loader=data_train_loader,
data_valid_loader= data_valid_loader,
epochs = epochs,
print_info = print_info,
metrics = metrics,
log= log,
metrics_print=metrics_print)
def evaluate(self, loader, attention= False, hidden_states=False):
# global feature
all_loss, feature, (logits, outputs) = loop.eval_loop(loader, self, self.dummy_param.device,
attention= attention, hidden_states=hidden_states)
logits = loop.map_batch(logits)
if len(outputs) != 0:
outputs = loop.map_batch(outputs)
return Output(np.mean(all_loss), feature, (logits, outputs))