Spaces:
Runtime error
Runtime error
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
import tensorflow_addons as tfa | |
import tensorflow as tf | |
from tensorflow.keras.utils import custom_object_scope | |
# Define a function to create the InstanceNormalization layer | |
def create_in(): | |
return tfa.layers.InstanceNormalization() | |
def model_out(model_path,img): | |
with custom_object_scope({'InstanceNormalization': create_in}): | |
model = tf.keras.models.load_model(model_path) | |
img = (img-127.5)/127.5 | |
img = np.expand_dims(img, 0) | |
pred = model.predict(img) | |
pred = np.asarray(pred) | |
return pred[0] | |
st.title("Face to Anime cyclegan") | |
face = st.file_uploader("face image input") | |
if face is not None: | |
img = Image.open(face) | |
img = img.resize((256, 256)) | |
img = np.array(img) | |
pred = model_out('anime_to_face2.h5', img) | |
st.image(img, caption="Uploaded Image") | |
st.image(((pred + 1) * 127.5).astype(np.uint8), caption="Generated Anime image") | |
st.header('Which architecture did I use architecture, Resnet-Blocks or Unet architecture?') | |
st.write('I have used ResNet architecture') | |
st.header('Problems:') | |
st.write('Sometimes(most of the times) generates cursedimages') | |
st.header('What hardware I trained it on?') | |
st.write('I trained the model on Kaggle notebook on P100 gpu with 13 gigs of ram cuz my pc wouldnt be in a good state if I trained the cyclegan model on Intel HD') | |
st.header('Why did I make this model?') | |
st.subheader('I made this model to extend my experience but mostly for FUNN!!!!') | |
st.write("-------------------------------------------------") |