Spaces:
Sleeping
Sleeping
| import os | |
| os.environ['KERAS_BACKEND'] = 'tensorflow' | |
| os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" | |
| import tensorflow as tf | |
| import keras | |
| import numpy as np | |
| from tokenizers import Tokenizer | |
| from huggingface_hub import hf_hub_download | |
| import json | |
| from abc import ABC, abstractmethod | |
| from fastapi import FastAPI, HTTPException | |
| from fastapi.responses import StreamingResponse | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from pydantic import BaseModel | |
| from typing import List, Optional, AsyncGenerator | |
| import asyncio | |
| import gradio as gr | |
| from gradio import HTML | |
| # ============================================================================== | |
| # Model Architecture (Same as before) | |
| # ============================================================================== | |
| class RotaryEmbedding(keras.layers.Layer): | |
| def __init__(self, dim, max_len=2048, theta=10000, **kwargs): | |
| super().__init__(**kwargs) | |
| self.dim = dim | |
| self.max_len = max_len | |
| self.theta = theta | |
| self.built_cache = False | |
| def build(self, input_shape): | |
| if not self.built_cache: | |
| inv_freq = 1.0 / (self.theta ** (tf.range(0, self.dim, 2, dtype=tf.float32) / self.dim)) | |
| t = tf.range(self.max_len, dtype=tf.float32) | |
| freqs = tf.einsum("i,j->ij", t, inv_freq) | |
| emb = tf.concat([freqs, freqs], axis=-1) | |
| self.cos_cached = tf.constant(tf.cos(emb), dtype=tf.float32) | |
| self.sin_cached = tf.constant(tf.sin(emb), dtype=tf.float32) | |
| self.built_cache = True | |
| super().build(input_shape) | |
| def rotate_half(self, x): | |
| x1, x2 = tf.split(x, 2, axis=-1) | |
| return tf.concat([-x2, x1], axis=-1) | |
| def call(self, q, k): | |
| seq_len = tf.shape(q)[2] | |
| dtype = q.dtype | |
| cos = tf.cast(self.cos_cached[:seq_len, :], dtype)[None, None, :, :] | |
| sin = tf.cast(self.sin_cached[:seq_len, :], dtype)[None, None, :, :] | |
| q_rotated = (q * cos) + (self.rotate_half(q) * sin) | |
| k_rotated = (k * cos) + (self.rotate_half(k) * sin) | |
| return q_rotated, k_rotated | |
| def get_config(self): | |
| config = super().get_config() | |
| config.update({"dim": self.dim, "max_len": self.max_len, "theta": self.theta}) | |
| return config | |
| class RMSNorm(keras.layers.Layer): | |
| def __init__(self, epsilon=1e-5, **kwargs): | |
| super().__init__(**kwargs) | |
| self.epsilon = epsilon | |
| def build(self, input_shape): | |
| self.scale = self.add_weight(name="scale", shape=(input_shape[-1],), initializer="ones") | |
| def call(self, x): | |
| variance = tf.reduce_mean(tf.square(x), axis=-1, keepdims=True) | |
| return x * tf.math.rsqrt(variance + self.epsilon) * self.scale | |
| def get_config(self): | |
| config = super().get_config() | |
| config.update({"epsilon": self.epsilon}) | |
| return config | |
| class TransformerBlock(keras.layers.Layer): | |
| def __init__(self, d_model, n_heads, ff_dim, dropout, max_len, rope_theta, layer_idx=0, **kwargs): | |
| super().__init__(**kwargs) | |
| self.d_model = d_model | |
| self.n_heads = n_heads | |
| self.ff_dim = ff_dim | |
| self.dropout_rate = dropout | |
| self.max_len = max_len | |
| self.rope_theta = rope_theta | |
| self.head_dim = d_model // n_heads | |
| self.layer_idx = layer_idx | |
| self.pre_attn_norm = RMSNorm() | |
| self.pre_ffn_norm = RMSNorm() | |
| self.q_proj = keras.layers.Dense(d_model, use_bias=False, name="q_proj") | |
| self.k_proj = keras.layers.Dense(d_model, use_bias=False, name="k_proj") | |
| self.v_proj = keras.layers.Dense(d_model, use_bias=False, name="v_proj") | |
| self.out_proj = keras.layers.Dense(d_model, use_bias=False, name="o_proj") | |
| self.rope = RotaryEmbedding(self.head_dim, max_len=max_len, theta=rope_theta) | |
| self.gate_proj = keras.layers.Dense(ff_dim, use_bias=False, name="gate_proj") | |
| self.up_proj = keras.layers.Dense(ff_dim, use_bias=False, name="up_proj") | |
| self.down_proj = keras.layers.Dense(d_model, use_bias=False, name="down_proj") | |
| self.dropout = keras.layers.Dropout(dropout) | |
| def call(self, x, training=None): | |
| B, T, D = tf.shape(x)[0], tf.shape(x)[1], self.d_model | |
| dtype = x.dtype | |
| res = x | |
| y = self.pre_attn_norm(x) | |
| q = tf.transpose(tf.reshape(self.q_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3]) | |
| k = tf.transpose(tf.reshape(self.k_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3]) | |
| v = tf.transpose(tf.reshape(self.v_proj(y), [B, T, self.n_heads, self.head_dim]), [0, 2, 1, 3]) | |
| q, k = self.rope(q, k) | |
| scores = tf.matmul(q, k, transpose_b=True) / tf.sqrt(tf.cast(self.head_dim, dtype)) | |
| mask = tf.where( | |
| tf.linalg.band_part(tf.ones([T, T], dtype=dtype), -1, 0) == 0, | |
| tf.constant(-1e9, dtype=dtype), | |
| tf.constant(0.0, dtype=dtype) | |
| ) | |
| scores += mask | |
| attn = tf.matmul(tf.nn.softmax(scores, axis=-1), v) | |
| attn = tf.reshape(tf.transpose(attn, [0, 2, 1, 3]), [B, T, D]) | |
| x = res + self.dropout(self.out_proj(attn), training=training) | |
| res = x | |
| y = self.pre_ffn_norm(x) | |
| ffn = self.down_proj(keras.activations.silu(self.gate_proj(y)) * self.up_proj(y)) | |
| return res + self.dropout(ffn, training=training) | |
| def get_config(self): | |
| config = super().get_config() | |
| config.update({ | |
| "d_model": self.d_model, | |
| "n_heads": self.n_heads, | |
| "ff_dim": self.ff_dim, | |
| "dropout": self.dropout_rate, | |
| "max_len": self.max_len, | |
| "rope_theta": self.rope_theta, | |
| "layer_idx": self.layer_idx | |
| }) | |
| return config | |
| class SAM1Model(keras.Model): | |
| def __init__(self, **kwargs): | |
| super().__init__() | |
| if 'config' in kwargs and isinstance(kwargs['config'], dict): | |
| self.cfg = kwargs['config'] | |
| elif 'vocab_size' in kwargs: | |
| self.cfg = kwargs | |
| else: | |
| self.cfg = kwargs.get('cfg', kwargs) | |
| self.embed = keras.layers.Embedding(self.cfg['vocab_size'], self.cfg['d_model'], name="embed_tokens") | |
| # β FIXED: Was using 'ff_num' β now correctly uses 'ff_dim' | |
| ff_dim = int(self.cfg['d_model'] * self.cfg['ff_mult']) | |
| block_args = { | |
| 'd_model': self.cfg['d_model'], | |
| 'n_heads': self.cfg['n_heads'], | |
| 'ff_dim': ff_dim, # β Correct variable name | |
| 'dropout': self.cfg['dropout'], | |
| 'max_len': self.cfg['max_len'], | |
| 'rope_theta': self.cfg['rope_theta'] | |
| } | |
| self.blocks = [] | |
| for i in range(self.cfg['n_layers']): | |
| block = TransformerBlock(name=f"block_{i}", layer_idx=i, **block_args) | |
| self.blocks.append(block) | |
| self.norm = RMSNorm(name="final_norm") | |
| self.lm_head = keras.layers.Dense(self.cfg['vocab_size'], use_bias=False, name="lm_head") | |
| def call(self, input_ids, training=None): | |
| x = self.embed(input_ids) | |
| for block in self.blocks: | |
| x = block(x, training=training) | |
| return self.lm_head(self.norm(x)) | |
| def get_config(self): | |
| base_config = super().get_config() | |
| base_config['config'] = self.cfg | |
| return base_config | |
| # ============================================================================== | |
| # Helper Functions | |
| # ============================================================================== | |
| def count_parameters(model): | |
| total_params = 0 | |
| non_zero_params = 0 | |
| for weight in model.weights: | |
| w = weight.numpy() | |
| total_params += w.size | |
| non_zero_params += np.count_nonzero(w) | |
| return total_params, non_zero_params | |
| def format_param_count(count): | |
| if count >= 1e9: | |
| return f"{count/1e9:.2f}B" | |
| elif count >= 1e6: | |
| return f"{count/1e6:.2f}M" | |
| elif count >= 1e3: | |
| return f"{count/1e3:.2f}K" | |
| else: | |
| return str(count) | |
| # ============================================================================== | |
| # Backend Interface | |
| # ============================================================================== | |
| class ModelBackend(ABC): | |
| def predict(self, input_ids): pass | |
| def get_name(self): pass | |
| def get_info(self): pass | |
| class KerasBackend(ModelBackend): | |
| def __init__(self, model, name, display_name): | |
| self.model = model | |
| self.name = name | |
| self.display_name = display_name | |
| total, non_zero = count_parameters(model) | |
| self.total_params = total | |
| self.non_zero_params = non_zero | |
| self.sparsity = (1 - non_zero / total) * 100 if total > 0 else 0 | |
| self.n_heads = model.cfg.get('n_heads', 0) | |
| self.ff_dim = int(model.cfg.get('d_model', 0) * model.cfg.get('ff_mult', 0)) | |
| def predict(self, input_ids): | |
| inputs = np.array([input_ids], dtype=np.int32) | |
| logits = self.model(inputs, training=False) | |
| return logits[0, -1, :].numpy() | |
| def get_name(self): | |
| return self.display_name | |
| def get_info(self): | |
| info = f"{self.display_name}\n" | |
| info += f" Total params: {format_param_count(self.total_params)}\n" | |
| info += f" Attention heads: {self.n_heads}\n" | |
| info += f" FFN dimension: {self.ff_dim}\n" | |
| if self.sparsity > 1: | |
| info += f" Sparsity: {self.sparsity:.1f}%\n" | |
| return info | |
| # ============================================================================== | |
| # Load Models & Tokenizer | |
| # ============================================================================== | |
| CONFIG_TOKENIZER_REPO_ID = "Smilyai-labs/Sam-1-large-it-0002" | |
| print("="*60) | |
| print("π SAM-X-1 API Server Loading...".center(60)) | |
| print("="*60) | |
| # Download config/tokenizer | |
| print(f"π¦ Fetching config & tokenizer from {CONFIG_TOKENIZER_REPO_ID}") | |
| config_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="config.json") | |
| tokenizer_path = hf_hub_download(repo_id=CONFIG_TOKENIZER_REPO_ID, filename="tokenizer.json") | |
| with open(config_path, 'r') as f: | |
| base_config = json.load(f) | |
| base_model_config = { | |
| 'vocab_size': base_config['vocab_size'], | |
| 'd_model': base_config['hidden_size'], | |
| 'n_heads': base_config['num_attention_heads'], | |
| 'ff_mult': base_config['intermediate_size'] / base_config['hidden_size'], | |
| 'dropout': base_config.get('dropout', 0.0), | |
| 'max_len': base_config['max_position_embeddings'], | |
| 'rope_theta': base_config['rope_theta'], | |
| 'n_layers': base_config['num_hidden_layers'] | |
| } | |
| print("π€ Building tokenizer...") | |
| tokenizer = Tokenizer.from_pretrained("gpt2") | |
| eos_token = "" | |
| eos_token_id = tokenizer.token_to_id(eos_token) | |
| if eos_token_id is None: | |
| tokenizer.add_special_tokens([eos_token]) | |
| eos_token_id = tokenizer.token_to_id(eos_token) | |
| custom_tokens = ["<think>", "<think/>"] | |
| for token in custom_tokens: | |
| if tokenizer.token_to_id(token) is None: | |
| tokenizer.add_special_tokens([token]) | |
| tokenizer.no_padding() | |
| tokenizer.enable_truncation(max_length=base_config['max_position_embeddings']) | |
| print("β Tokenizer ready") | |
| # Model Registry | |
| MODEL_REGISTRY = [ | |
| ("SAM-X-1-Large", "Smilyai-labs/Sam-1x-instruct", "ckpt.weights.h5", None), | |
| ("SAM-X-1-Fast β‘ (BETA)", "Smilyai-labs/Sam-X-1-fast", "sam1_fast_finetuned.weights.h5", "sam1_fast_finetuned_config.json"), | |
| ("SAM-X-1-Mini π (BETA)", "Smilyai-labs/Sam-X-1-Mini", "sam1_mini.weights_finetuned.h5", "sam1_mini_finetuned_config.json"), | |
| ("SAM-X-1-Nano β‘β‘ (BETA)", "Smilyai-labs/Sam-X-1-Nano", "sam1_nano_finetuned.weights.h5", "sam1_nano_finetuned_config.json"), | |
| ] | |
| available_models = {} | |
| dummy_input = tf.zeros((1, 1), dtype=tf.int32) | |
| for display_name, repo_id, weights_filename, config_filename in MODEL_REGISTRY: | |
| try: | |
| print(f"\nπ₯ Loading {display_name}...") | |
| weights_path = hf_hub_download(repo_id=repo_id, filename=weights_filename) | |
| model_config = base_model_config.copy() | |
| if config_filename: | |
| print(f" Custom config: {config_filename}") | |
| custom_config_path = hf_hub_download(repo_id=repo_id, filename=config_filename) | |
| with open(custom_config_path, 'r') as f: | |
| model_config.update(json.load(f)) | |
| model = SAM1Model(**model_config) | |
| model(dummy_input) | |
| model.load_weights(weights_path) | |
| model.trainable = False | |
| backend = KerasBackend(model, display_name, display_name) | |
| available_models[display_name] = backend | |
| print(f"β Loaded: {display_name}") | |
| print(f" β Params: {format_param_count(backend.total_params)} | Heads: {backend.n_heads}") | |
| except Exception as e: | |
| print(f"β Failed to load {display_name}: {e}") | |
| if not available_models: | |
| raise RuntimeError("No models loaded!") | |
| current_backend = list(available_models.values())[0] | |
| print(f"\nπ Ready! Default model: {current_backend.get_name()}") | |
| # ============================================================================== | |
| # Streaming Generator | |
| # ============================================================================== | |
| async def generate_stream(prompt: str, backend, temperature: float) -> AsyncGenerator[str, None]: # β Fixed type hint | |
| encoded_prompt = tokenizer.encode(prompt) | |
| input_ids = [i for i in encoded_prompt.ids if i != eos_token_id] | |
| generated = input_ids.copy() | |
| max_len = backend.model.cfg['max_len'] | |
| buffer = "" | |
| for _ in range(512): | |
| await asyncio.sleep(0) | |
| current_input = generated[-max_len:] | |
| next_token_logits = backend.predict(current_input) | |
| if temperature > 0: | |
| next_token_logits /= temperature | |
| top_k_indices = np.argpartition(next_token_logits, -50)[-50:] | |
| top_k_logits = next_token_logits[top_k_indices] | |
| top_k_probs = np.exp(top_k_logits - np.max(top_k_logits)) | |
| top_k_probs /= top_k_probs.sum() | |
| next_token = np.random.choice(top_k_indices, p=top_k_probs) | |
| else: | |
| next_token = int(np.argmax(next_token_logits)) | |
| if next_token == eos_token_id: | |
| break | |
| generated.append(int(next_token)) | |
| new_text = tokenizer.decode(generated[len(input_ids):]) | |
| if len(new_text) > len(buffer): | |
| new_chunk = new_text[len(buffer):] | |
| buffer = new_text | |
| yield new_chunk | |
| # ============================================================================== | |
| # FastAPI Endpoints (OpenAI-style) | |
| # ============================================================================== | |
| class Message(BaseModel): | |
| role: str | |
| content: str | |
| class ChatCompletionRequest(BaseModel): | |
| model: str = list(available_models.keys())[0] | |
| messages: List[Message] | |
| temperature: float = 0.7 | |
| stream: bool = False | |
| max_tokens: int = 512 | |
| app = FastAPI() | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| async def chat_completions(request: ChatCompletionRequest): | |
| if request.model not in available_models: | |
| raise HTTPException(404, f"Model '{request.model}' not found.") | |
| backend = available_models[request.model] | |
| prompt_parts = [] | |
| for msg in request.messages: | |
| prefix = "User" if msg.role.lower() == "user" else "Sam" | |
| prompt_parts.append(f"{prefix}: {msg.content}") | |
| prompt_parts.append("Sam: <think>") | |
| prompt = "\n".join(prompt_parts) | |
| async def event_stream(): | |
| async for token in generate_stream(prompt, backend, request.temperature): | |
| chunk = { | |
| "id": "chatcmpl-123", | |
| "object": "chat.completion.chunk", | |
| "created": 1677858242, | |
| "model": request.model, | |
| "choices": [{ | |
| "index": 0, | |
| "delta": {"content": token}, | |
| "finish_reason": None | |
| }] | |
| } | |
| yield f" {json.dumps(chunk)}\n\n" | |
| yield " [DONE]\n\n" | |
| if request.stream: | |
| return StreamingResponse(event_stream(), media_type="text/event-stream") | |
| else: | |
| full = "" | |
| async for token in event_stream(): | |
| if "[DONE]" not in token: | |
| data = json.loads(token.replace(" ", "").strip()) | |
| full += data["choices"][0]["delta"]["content"] | |
| return {"choices": [{"message": {"content": full}}]} | |
| async def list_models(): | |
| return { | |
| "data": [ | |
| {"id": name, "object": "model", "owned_by": "SmilyAI"} | |
| for name in available_models.keys() | |
| ] | |
| } | |
| # ============================================================================== | |
| # Gradio App (API Info Page) | |
| # ============================================================================== | |
| def get_api_info(): | |
| model_info = "\n".join([f"- {name}" for name in available_models.keys()]) | |
| return f""" | |
| # π€ SAM-X-1 AI API Server | |
| This is a production-grade API server for the SAM-X-1 family of models. | |
| ## π Available Models: | |
| {model_info} | |
| ## π API Endpoints: | |
| - `POST /v1/chat/completions` - Chat completions (OpenAI-style) | |
| - `GET /v1/models` - List available models | |
| ## π Streaming: | |
| Set `"stream": true` in your request to receive real-time token-by-token responses. | |
| ## π§ͺ Example Request: | |
| ```json | |
| {{ | |
| "model": "SAM-X-1-Large", | |
| "messages": [ | |
| {{"role": "user", "content": "Hello!"}} | |
| ], | |
| "stream": true, | |
| "temperature": 0.7 | |
| }} | |
| ``` | |
| """ | |
| # Create the Gradio app | |
| with gr.Blocks(title="SAM-X-1 API") as demo: | |
| gr.Markdown(get_api_info()) | |
| # Launch Gradio app with FastAPI mounted | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) |