Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import streamlit as st
|
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
from prediction import predict
|
|
|
7 |
from sklearn.datasets import load_iris
|
8 |
from ydata_profiling.utils.cache import cache_file
|
9 |
|
@@ -16,9 +17,9 @@ setosa, versicolor, virginica')
|
|
16 |
st.image('https://machinelearninghd.com/wp-content/uploads/2021/03/iris-dataset.png')
|
17 |
st.image('https://www.integratedots.com/wp-content/uploads/2019/06/iris_petal-sepal-e1560211020463.png')
|
18 |
|
19 |
-
|
20 |
-
#iris = load_iris(as_frame=True)
|
21 |
|
|
|
22 |
@st.cache_data
|
23 |
def load_data(url):
|
24 |
df = pd.read_csv(url)
|
@@ -31,14 +32,17 @@ iris = cache_file(
|
|
31 |
|
32 |
df = load_data(iris)
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
-
#df['Target'] = df['Target'].apply(lambda x: iris['target_names'][x])
|
42 |
|
43 |
st.header('Plant Features')
|
44 |
col1, col2 = st.columns(2)
|
@@ -54,12 +58,4 @@ with col2:
|
|
54 |
|
55 |
if st.button('Predict type of Iris'):
|
56 |
result = predict(np.array([[sepal_l, sepal_w, petal_l, petal_w]]))
|
57 |
-
st.text(result[0])
|
58 |
-
|
59 |
-
st.write("---")
|
60 |
-
if st.checkbox("Sample preview the Iris Dataset"):
|
61 |
-
#st.write(df.sample(10)) # Same as st.write(df)
|
62 |
-
pr = ProfileReport(df,title="Dataset Report")
|
63 |
-
st_profile_report(pr)
|
64 |
-
|
65 |
-
st.write("---")
|
|
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
from prediction import predict
|
7 |
+
from function import filter_dataframe
|
8 |
from sklearn.datasets import load_iris
|
9 |
from ydata_profiling.utils.cache import cache_file
|
10 |
|
|
|
17 |
st.image('https://machinelearninghd.com/wp-content/uploads/2021/03/iris-dataset.png')
|
18 |
st.image('https://www.integratedots.com/wp-content/uploads/2019/06/iris_petal-sepal-e1560211020463.png')
|
19 |
|
20 |
+
st.write("---")
|
|
|
21 |
|
22 |
+
# Load Dataset
|
23 |
@st.cache_data
|
24 |
def load_data(url):
|
25 |
df = pd.read_csv(url)
|
|
|
32 |
|
33 |
df = load_data(iris)
|
34 |
|
35 |
+
if st.checkbox('Open Iris Dataset'):
|
36 |
+
fd = filter_dataframe(df)
|
37 |
+
st.dataframe(fd, use_container_width=True)
|
38 |
+
|
39 |
+
st.write("---")
|
40 |
|
41 |
+
if st.checkbox('Open EDA Report'):
|
42 |
+
pr = ProfileReport(df)
|
43 |
+
st_profile_report(pr)
|
44 |
|
45 |
+
st.write("---")
|
|
|
46 |
|
47 |
st.header('Plant Features')
|
48 |
col1, col2 = st.columns(2)
|
|
|
58 |
|
59 |
if st.button('Predict type of Iris'):
|
60 |
result = predict(np.array([[sepal_l, sepal_w, petal_l, petal_w]]))
|
61 |
+
st.text(result[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|