Bayhaqy commited on
Commit
bfdebbf
1 Parent(s): b09a18e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -17
app.py CHANGED
@@ -4,6 +4,7 @@ import streamlit as st
4
  import pandas as pd
5
  import numpy as np
6
  from prediction import predict
 
7
  from sklearn.datasets import load_iris
8
  from ydata_profiling.utils.cache import cache_file
9
 
@@ -16,9 +17,9 @@ setosa, versicolor, virginica')
16
  st.image('https://machinelearninghd.com/wp-content/uploads/2021/03/iris-dataset.png')
17
  st.image('https://www.integratedots.com/wp-content/uploads/2019/06/iris_petal-sepal-e1560211020463.png')
18
 
19
- # Load Dataset
20
- #iris = load_iris(as_frame=True)
21
 
 
22
  @st.cache_data
23
  def load_data(url):
24
  df = pd.read_csv(url)
@@ -31,14 +32,17 @@ iris = cache_file(
31
 
32
  df = load_data(iris)
33
 
34
- # Create a DataFrame from the iris data
35
- #df = pd.DataFrame(iris.data, columns=iris.feature_names)
 
 
 
36
 
37
- # Add a target column to the DataFrame
38
- #df['Target'] = iris['target']
 
39
 
40
- # Translate the target
41
- #df['Target'] = df['Target'].apply(lambda x: iris['target_names'][x])
42
 
43
  st.header('Plant Features')
44
  col1, col2 = st.columns(2)
@@ -54,12 +58,4 @@ with col2:
54
 
55
  if st.button('Predict type of Iris'):
56
  result = predict(np.array([[sepal_l, sepal_w, petal_l, petal_w]]))
57
- st.text(result[0])
58
-
59
- st.write("---")
60
- if st.checkbox("Sample preview the Iris Dataset"):
61
- #st.write(df.sample(10)) # Same as st.write(df)
62
- pr = ProfileReport(df,title="Dataset Report")
63
- st_profile_report(pr)
64
-
65
- st.write("---")
 
4
  import pandas as pd
5
  import numpy as np
6
  from prediction import predict
7
+ from function import filter_dataframe
8
  from sklearn.datasets import load_iris
9
  from ydata_profiling.utils.cache import cache_file
10
 
 
17
  st.image('https://machinelearninghd.com/wp-content/uploads/2021/03/iris-dataset.png')
18
  st.image('https://www.integratedots.com/wp-content/uploads/2019/06/iris_petal-sepal-e1560211020463.png')
19
 
20
+ st.write("---")
 
21
 
22
+ # Load Dataset
23
  @st.cache_data
24
  def load_data(url):
25
  df = pd.read_csv(url)
 
32
 
33
  df = load_data(iris)
34
 
35
+ if st.checkbox('Open Iris Dataset'):
36
+ fd = filter_dataframe(df)
37
+ st.dataframe(fd, use_container_width=True)
38
+
39
+ st.write("---")
40
 
41
+ if st.checkbox('Open EDA Report'):
42
+ pr = ProfileReport(df)
43
+ st_profile_report(pr)
44
 
45
+ st.write("---")
 
46
 
47
  st.header('Plant Features')
48
  col1, col2 = st.columns(2)
 
58
 
59
  if st.button('Predict type of Iris'):
60
  result = predict(np.array([[sepal_l, sepal_w, petal_l, petal_w]]))
61
+ st.text(result[0])