Dragreal / utils /dift_util.py
BasicNp's picture
Upload 1672 files
e8aa256 verified
import gc
from typing import Any, Dict, Optional, Union
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
from diffusers import DDIMScheduler, StableDiffusionPipeline
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from PIL import Image, ImageDraw
class MyUNet2DConditionModel(UNet2DConditionModel):
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
up_ft_indices,
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None
):
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
`self.processor` in
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
# logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# 0. center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# 1. time
timesteps = timestep
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == 'mps'
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError('class_labels should be provided when num_class_embeds > 0')
if self.config.class_embed_type == 'timestep':
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, 'has_cross_attention') and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
cross_attention_kwargs=cross_attention_kwargs,
)
# 5. up
up_ft = {}
for i, upsample_block in enumerate(self.up_blocks):
if i > np.max(up_ft_indices):
break
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, 'has_cross_attention') and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
upsample_size=upsample_size,
attention_mask=attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
if i in up_ft_indices:
up_ft[i] = sample.detach()
output = {}
output['up_ft'] = up_ft
return output
class OneStepSDPipeline(StableDiffusionPipeline):
@torch.no_grad()
def __call__(
self,
img_tensor,
t,
up_ft_indices,
prompt_embeds: Optional[torch.FloatTensor] = None,
cross_attention_kwargs: Optional[Dict[str, Any]] = None
):
device = self._execution_device
latents = self.vae.encode(img_tensor).latent_dist.sample() * self.vae.config.scaling_factor
t = torch.tensor(t, dtype=torch.long, device=device)
noise = torch.randn_like(latents).to(device)
latents_noisy = self.scheduler.add_noise(latents, noise, t)
unet_output = self.unet(latents_noisy, t, up_ft_indices, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs)
return unet_output
class SDFeaturizer:
def __init__(self, sd_id='pretrained_models/stable-diffusion-v1-4'):
unet = MyUNet2DConditionModel.from_pretrained(sd_id, subfolder='unet')
onestep_pipe = OneStepSDPipeline.from_pretrained(sd_id, unet=unet, safety_checker=None)
onestep_pipe.vae.decoder = None
onestep_pipe.scheduler = DDIMScheduler.from_pretrained(sd_id, subfolder='scheduler')
gc.collect()
onestep_pipe = onestep_pipe.to('cuda')
onestep_pipe.enable_attention_slicing()
self.pipe = onestep_pipe
@torch.no_grad()
def forward(self,
img_tensor,
prompt,
t=261,
up_ft_index=0,
ensemble_size=8):
'''
Args:
img_tensor: should be a single torch tensor in the shape of [1, C, H, W] or [C, H, W]
prompt: the prompt to use, a string
t: the time step to use, should be an int in the range of [0, 1000]
up_ft_index: which upsampling block of the U-Net to extract feature, you can choose [0, 1, 2, 3]
ensemble_size: the number of repeated images used in the batch to extract features
Return:
unet_ft: a torch tensor in the shape of [1, c, h, w]
'''
img_tensor = img_tensor.repeat(ensemble_size, 1, 1, 1).cuda() # ensem, c, h, w
prompt_embeds = self.pipe._encode_prompt(
prompt=prompt,
device='cuda',
num_images_per_prompt=1,
do_classifier_free_guidance=False) # [1, 77, dim]
prompt_embeds = prompt_embeds.repeat(ensemble_size, 1, 1)
unet_ft_all = self.pipe(
img_tensor=img_tensor,
t=t,
up_ft_indices=[up_ft_index],
prompt_embeds=prompt_embeds)
unet_ft = unet_ft_all['up_ft'][up_ft_index] # ensem, c, h, w
unet_ft = unet_ft.mean(0, keepdim=True) # 1,c,h,w
return unet_ft
class DIFT_Demo:
def __init__(self, source_img, source_dift, source_img_size):
self.source_dift = source_dift # NCHW # torch.Size([1, 1280, 28, 48])
self.source_img = source_img
self.source_img_size = source_img_size
@torch.no_grad()
def query(self, target_img, target_dift, target_img_size, query_point, target_point, visualize=False):
num_channel = self.source_dift.size(1)
cos = nn.CosineSimilarity(dim=1)
source_x, source_y = int(np.round(query_point[1])), int(np.round(query_point[0]))
src_ft = self.source_dift
src_ft = nn.Upsample(size=self.source_img_size, mode='bilinear')(src_ft)
src_vec = src_ft[0, :, source_y, source_x].view(1, num_channel, 1, 1) # 1, C, 1, 1
tgt_ft = nn.Upsample(size=target_img_size, mode='bilinear')(target_dift)
cos_map = cos(src_vec, tgt_ft).cpu().numpy() # N, H, W (1, 448, 768)
max_yx = np.unravel_index(cos_map[0].argmax(), cos_map[0].shape)
target_x, target_y = int(np.round(target_point[1])), int(np.round(target_point[0]))
if visualize:
heatmap = cos_map[0]
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
cmap = plt.get_cmap('viridis')
heatmap_color = (cmap(heatmap) * 255)[..., :3].astype(np.uint8)
alpha, radius, color = 0.5, 3, (0, 255, 0)
blended_image = Image.blend(target_img, Image.fromarray(heatmap_color), alpha=alpha)
draw = ImageDraw.Draw(blended_image)
draw.ellipse((max_yx[1] - radius, max_yx[0] - radius, max_yx[1] + radius, max_yx[0] + radius), fill=color)
draw.ellipse((target_x - radius, target_y - radius, target_x + radius, target_y + radius), fill=color)
else:
blended_image = None
dift_feat, confidence = tgt_ft[0, :, target_y, target_x], cos_map[0, target_y, target_x]
return dift_feat, confidence, blended_image