Dragreal / utils /diffusers /pipelines /latent_diffusion /pipeline_latent_diffusion_superresolution.py
BasicNp's picture
Upload 1672 files
e8aa256 verified
raw
history blame contribute delete
No virus
8.06 kB
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.utils.checkpoint
from ...models import UNet2DModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def preprocess(image):
w, h = image.size
w, h = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
class LDMSuperResolutionPipeline(DiffusionPipeline):
r"""
A pipeline for image super-resolution using latent diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
vqvae ([`VQModel`]):
Vector-quantized (VQ) model to encode and decode images to and from latent representations.
unet ([`UNet2DModel`]):
A `UNet2DModel` to denoise the encoded image.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`],
[`EulerAncestralDiscreteScheduler`], [`DPMSolverMultistepScheduler`], or [`PNDMScheduler`].
"""
def __init__(
self,
vqvae: VQModel,
unet: UNet2DModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
):
super().__init__()
self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
image: Union[torch.Tensor, PIL.Image.Image] = None,
batch_size: Optional[int] = 1,
num_inference_steps: Optional[int] = 100,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
The call function to the pipeline for generation.
Args:
image (`torch.Tensor` or `PIL.Image.Image`):
`Image` or tensor representing an image batch to be used as the starting point for the process.
batch_size (`int`, *optional*, defaults to 1):
Number of images to generate.
num_inference_steps (`int`, *optional*, defaults to 100):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
Example:
```py
>>> import requests
>>> from PIL import Image
>>> from io import BytesIO
>>> from diffusers import LDMSuperResolutionPipeline
>>> import torch
>>> # load model and scheduler
>>> pipeline = LDMSuperResolutionPipeline.from_pretrained("CompVis/ldm-super-resolution-4x-openimages")
>>> pipeline = pipeline.to("cuda")
>>> # let's download an image
>>> url = (
... "https://user-images.githubusercontent.com/38061659/199705896-b48e17b8-b231-47cd-a270-4ffa5a93fa3e.png"
... )
>>> response = requests.get(url)
>>> low_res_img = Image.open(BytesIO(response.content)).convert("RGB")
>>> low_res_img = low_res_img.resize((128, 128))
>>> # run pipeline in inference (sample random noise and denoise)
>>> upscaled_image = pipeline(low_res_img, num_inference_steps=100, eta=1).images[0]
>>> # save image
>>> upscaled_image.save("ldm_generated_image.png")
```
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""
if isinstance(image, PIL.Image.Image):
batch_size = 1
elif isinstance(image, torch.Tensor):
batch_size = image.shape[0]
else:
raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(image)}")
if isinstance(image, PIL.Image.Image):
image = preprocess(image)
height, width = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
latents_shape = (batch_size, self.unet.config.in_channels // 2, height, width)
latents_dtype = next(self.unet.parameters()).dtype
latents = randn_tensor(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
image = image.to(device=self.device, dtype=latents_dtype)
# set timesteps and move to the correct device
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps_tensor = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_kwargs = {}
if accepts_eta:
extra_kwargs["eta"] = eta
for t in self.progress_bar(timesteps_tensor):
# concat latents and low resolution image in the channel dimension.
latents_input = torch.cat([latents, image], dim=1)
latents_input = self.scheduler.scale_model_input(latents_input, t)
# predict the noise residual
noise_pred = self.unet(latents_input, t).sample
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample
# decode the image latents with the VQVAE
image = self.vqvae.decode(latents).sample
image = torch.clamp(image, -1.0, 1.0)
image = image / 2 + 0.5
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)