|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import torch |
|
from transformers import T5EncoderModel, T5Tokenizer |
|
|
|
from ...loaders import LoraLoaderMixin |
|
from ...models import Kandinsky3UNet, VQModel |
|
from ...schedulers import DDPMScheduler |
|
from ...utils import ( |
|
deprecate, |
|
is_accelerate_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> from diffusers import AutoPipelineForText2Image |
|
>>> import torch |
|
|
|
>>> pipe = AutoPipelineForText2Image.from_pretrained("kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16) |
|
>>> pipe.enable_model_cpu_offload() |
|
|
|
>>> prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background." |
|
|
|
>>> generator = torch.Generator(device="cpu").manual_seed(0) |
|
>>> image = pipe(prompt, num_inference_steps=25, generator=generator).images[0] |
|
``` |
|
|
|
""" |
|
|
|
|
|
def downscale_height_and_width(height, width, scale_factor=8): |
|
new_height = height // scale_factor**2 |
|
if height % scale_factor**2 != 0: |
|
new_height += 1 |
|
new_width = width // scale_factor**2 |
|
if width % scale_factor**2 != 0: |
|
new_width += 1 |
|
return new_height * scale_factor, new_width * scale_factor |
|
|
|
|
|
class Kandinsky3Pipeline(DiffusionPipeline, LoraLoaderMixin): |
|
model_cpu_offload_seq = "text_encoder->unet->movq" |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
"negative_attention_mask", |
|
"attention_mask", |
|
] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: T5Tokenizer, |
|
text_encoder: T5EncoderModel, |
|
unet: Kandinsky3UNet, |
|
scheduler: DDPMScheduler, |
|
movq: VQModel, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq |
|
) |
|
|
|
def remove_all_hooks(self): |
|
if is_accelerate_available(): |
|
from accelerate.hooks import remove_hook_from_module |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
for model in [self.text_encoder, self.unet, self.movq]: |
|
if model is not None: |
|
remove_hook_from_module(model, recurse=True) |
|
|
|
self.unet_offload_hook = None |
|
self.text_encoder_offload_hook = None |
|
self.final_offload_hook = None |
|
|
|
def process_embeds(self, embeddings, attention_mask, cut_context): |
|
if cut_context: |
|
embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) |
|
max_seq_length = attention_mask.sum(-1).max() + 1 |
|
embeddings = embeddings[:, :max_seq_length] |
|
attention_mask = attention_mask[:, :max_seq_length] |
|
return embeddings, attention_mask |
|
|
|
@torch.no_grad() |
|
def encode_prompt( |
|
self, |
|
prompt, |
|
do_classifier_free_guidance=True, |
|
num_images_per_prompt=1, |
|
device=None, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
_cut_context=False, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
negative_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`, *optional*): |
|
torch device to place the resulting embeddings on |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. |
|
negative_attention_mask (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. |
|
""" |
|
if prompt is not None and negative_prompt is not None: |
|
if type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
|
|
if device is None: |
|
device = self._execution_device |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
max_length = 128 |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids.to(device) |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
prompt_embeds, attention_mask = self.process_embeds(prompt_embeds, attention_mask, _cut_context) |
|
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) |
|
|
|
if self.text_encoder is not None: |
|
dtype = self.text_encoder.dtype |
|
else: |
|
dtype = None |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
attention_mask = attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
|
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
if negative_prompt is not None: |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=128, |
|
truncation=True, |
|
return_attention_mask=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = uncond_input.input_ids.to(device) |
|
negative_attention_mask = uncond_input.attention_mask.to(device) |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
text_input_ids, |
|
attention_mask=negative_attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]] |
|
negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]] |
|
negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) |
|
|
|
else: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_attention_mask = torch.zeros_like(attention_mask) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) |
|
if negative_prompt_embeds.shape != prompt_embeds.shape: |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
|
|
|
|
|
|
else: |
|
negative_prompt_embeds = None |
|
negative_attention_mask = None |
|
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask |
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
attention_mask=None, |
|
negative_attention_mask=None, |
|
): |
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if negative_prompt_embeds is not None and negative_attention_mask is None: |
|
raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`") |
|
|
|
if negative_prompt_embeds is not None and negative_attention_mask is not None: |
|
if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: |
|
raise ValueError( |
|
"`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but" |
|
f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`" |
|
f" {negative_attention_mask.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and attention_mask is None: |
|
raise ValueError("Please provide `attention_mask` along with `prompt_embeds`") |
|
|
|
if prompt_embeds is not None and attention_mask is not None: |
|
if prompt_embeds.shape[:2] != attention_mask.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`" |
|
f" {attention_mask.shape}." |
|
) |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
num_inference_steps: int = 25, |
|
guidance_scale: float = 3.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
height: Optional[int] = 1024, |
|
width: Optional[int] = 1024, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
negative_attention_mask: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
latents=None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` |
|
timesteps are used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 3.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size): |
|
The width in pixels of the generated image. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. |
|
negative_attention_mask (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
clean_caption (`bool`, *optional*, defaults to `True`): |
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to |
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw |
|
prompt. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple` |
|
|
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
cut_context = True |
|
device = self._execution_device |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
attention_mask, |
|
negative_attention_mask, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt( |
|
prompt, |
|
self.do_classifier_free_guidance, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
_cut_context=cut_context, |
|
attention_mask=attention_mask, |
|
negative_attention_mask=negative_attention_mask, |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
height, width = downscale_height_and_width(height, width, 8) |
|
|
|
latents = self.prepare_latents( |
|
(batch_size * num_images_per_prompt, 4, height, width), |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
self.scheduler, |
|
) |
|
|
|
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: |
|
self.text_encoder_offload_hook.offload() |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
|
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond |
|
|
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
t, |
|
latents, |
|
generator=generator, |
|
).prev_sample |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
attention_mask = callback_outputs.pop("attention_mask", attention_mask) |
|
negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
if output_type not in ["pt", "np", "pil", "latent"]: |
|
raise ValueError( |
|
f"Only the output types `pt`, `pil`, `np` and `latent` are supported not output_type={output_type}" |
|
) |
|
|
|
if not output_type == "latent": |
|
image = self.movq.decode(latents, force_not_quantize=True)["sample"] |
|
|
|
if output_type in ["np", "pil"]: |
|
image = image * 0.5 + 0.5 |
|
image = image.clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
else: |
|
image = latents |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|