|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...loaders import UNet2DConditionLoadersMixin |
|
from ...models.activations import get_activation |
|
from ...models.attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
from ...models.embeddings import ( |
|
TimestepEmbedding, |
|
Timesteps, |
|
) |
|
from ...models.modeling_utils import ModelMixin |
|
from ...models.resnet import Downsample2D, ResnetBlock2D, Upsample2D |
|
from ...models.transformer_2d import Transformer2DModel |
|
from ...models.unet_2d_blocks import DownBlock2D, UpBlock2D |
|
from ...models.unet_2d_condition import UNet2DConditionOutput |
|
from ...utils import BaseOutput, is_torch_version, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def add_special_tokens(hidden_states, attention_mask, sos_token, eos_token): |
|
batch_size = hidden_states.shape[0] |
|
|
|
if attention_mask is not None: |
|
|
|
new_attn_mask_step = attention_mask.new_ones((batch_size, 1)) |
|
attention_mask = torch.concat([new_attn_mask_step, attention_mask, new_attn_mask_step], dim=-1) |
|
|
|
|
|
sos_token = sos_token.expand(batch_size, 1, -1) |
|
eos_token = eos_token.expand(batch_size, 1, -1) |
|
hidden_states = torch.concat([sos_token, hidden_states, eos_token], dim=1) |
|
return hidden_states, attention_mask |
|
|
|
|
|
@dataclass |
|
class AudioLDM2ProjectionModelOutput(BaseOutput): |
|
""" |
|
Args: |
|
Class for AudioLDM2 projection layer's outputs. |
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states obtained by linearly projecting the hidden-states for each of the text |
|
encoders and subsequently concatenating them together. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices, formed by concatenating the attention masks |
|
for the two text encoders together. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
""" |
|
|
|
hidden_states: torch.FloatTensor |
|
attention_mask: Optional[torch.LongTensor] = None |
|
|
|
|
|
class AudioLDM2ProjectionModel(ModelMixin, ConfigMixin): |
|
""" |
|
A simple linear projection model to map two text embeddings to a shared latent space. It also inserts learned |
|
embedding vectors at the start and end of each text embedding sequence respectively. Each variable appended with |
|
`_1` refers to that corresponding to the second text encoder. Otherwise, it is from the first. |
|
|
|
Args: |
|
text_encoder_dim (`int`): |
|
Dimensionality of the text embeddings from the first text encoder (CLAP). |
|
text_encoder_1_dim (`int`): |
|
Dimensionality of the text embeddings from the second text encoder (T5 or VITS). |
|
langauge_model_dim (`int`): |
|
Dimensionality of the text embeddings from the language model (GPT2). |
|
""" |
|
|
|
@register_to_config |
|
def __init__(self, text_encoder_dim, text_encoder_1_dim, langauge_model_dim): |
|
super().__init__() |
|
|
|
self.projection = nn.Linear(text_encoder_dim, langauge_model_dim) |
|
self.projection_1 = nn.Linear(text_encoder_1_dim, langauge_model_dim) |
|
|
|
|
|
self.sos_embed = nn.Parameter(torch.ones(langauge_model_dim)) |
|
self.eos_embed = nn.Parameter(torch.ones(langauge_model_dim)) |
|
|
|
self.sos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim)) |
|
self.eos_embed_1 = nn.Parameter(torch.ones(langauge_model_dim)) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor] = None, |
|
hidden_states_1: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
attention_mask_1: Optional[torch.LongTensor] = None, |
|
): |
|
hidden_states = self.projection(hidden_states) |
|
hidden_states, attention_mask = add_special_tokens( |
|
hidden_states, attention_mask, sos_token=self.sos_embed, eos_token=self.eos_embed |
|
) |
|
|
|
hidden_states_1 = self.projection_1(hidden_states_1) |
|
hidden_states_1, attention_mask_1 = add_special_tokens( |
|
hidden_states_1, attention_mask_1, sos_token=self.sos_embed_1, eos_token=self.eos_embed_1 |
|
) |
|
|
|
|
|
hidden_states = torch.cat([hidden_states, hidden_states_1], dim=1) |
|
|
|
|
|
if attention_mask is None and attention_mask_1 is not None: |
|
attention_mask = attention_mask_1.new_ones((hidden_states[:2])) |
|
elif attention_mask is not None and attention_mask_1 is None: |
|
attention_mask_1 = attention_mask.new_ones((hidden_states_1[:2])) |
|
|
|
if attention_mask is not None and attention_mask_1 is not None: |
|
attention_mask = torch.cat([attention_mask, attention_mask_1], dim=-1) |
|
else: |
|
attention_mask = None |
|
|
|
return AudioLDM2ProjectionModelOutput( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
) |
|
|
|
|
|
class AudioLDM2UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample |
|
shaped output. Compared to the vanilla [`UNet2DConditionModel`], this variant optionally includes an additional |
|
self-attention layer in each Transformer block, as well as multiple cross-attention layers. It also allows for up |
|
to two cross-attention embeddings, `encoder_hidden_states` and `encoder_hidden_states_1`. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output. |
|
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): |
|
Whether to flip the sin to cos in the time embedding. |
|
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): |
|
Block type for middle of UNet, it can only be `UNetMidBlock2DCrossAttn` for AudioLDM2. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`): |
|
The tuple of upsample blocks to use. |
|
only_cross_attention (`bool` or `Tuple[bool]`, *optional*, default to `False`): |
|
Whether to include self-attention in the basic transformer blocks, see |
|
[`~models.attention.BasicTransformerBlock`]. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. |
|
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. |
|
If `None`, normalization and activation layers is skipped in post-processing. |
|
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. |
|
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): |
|
The dimension of the cross attention features. |
|
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for |
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], |
|
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. |
|
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. |
|
num_attention_heads (`int`, *optional*): |
|
The number of attention heads. If not defined, defaults to `attention_head_dim` |
|
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config |
|
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`. |
|
class_embed_type (`str`, *optional*, defaults to `None`): |
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, |
|
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. |
|
num_class_embeds (`int`, *optional*, defaults to `None`): |
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing |
|
class conditioning with `class_embed_type` equal to `None`. |
|
time_embedding_type (`str`, *optional*, defaults to `positional`): |
|
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. |
|
time_embedding_dim (`int`, *optional*, defaults to `None`): |
|
An optional override for the dimension of the projected time embedding. |
|
time_embedding_act_fn (`str`, *optional*, defaults to `None`): |
|
Optional activation function to use only once on the time embeddings before they are passed to the rest of |
|
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`. |
|
timestep_post_act (`str`, *optional*, defaults to `None`): |
|
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. |
|
time_cond_proj_dim (`int`, *optional*, defaults to `None`): |
|
The dimension of `cond_proj` layer in the timestep embedding. |
|
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. |
|
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. |
|
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when |
|
`class_embed_type="projection"`. Required when `class_embed_type="projection"`. |
|
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time |
|
embeddings with the class embeddings. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int]] = 1, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
time_embedding_type: str = "positional", |
|
time_embedding_dim: Optional[int] = None, |
|
time_embedding_act_fn: Optional[str] = None, |
|
timestep_post_act: Optional[str] = None, |
|
time_cond_proj_dim: Optional[int] = None, |
|
conv_in_kernel: int = 3, |
|
conv_out_kernel: int = 3, |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
class_embeddings_concat: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
|
|
if num_attention_heads is not None: |
|
raise ValueError( |
|
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_attention_heads = num_attention_heads or attention_head_dim |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
|
|
conv_in_padding = (conv_in_kernel - 1) // 2 |
|
self.conv_in = nn.Conv2d( |
|
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding |
|
) |
|
|
|
|
|
if time_embedding_type == "positional": |
|
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 |
|
|
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) |
|
timestep_input_dim = block_out_channels[0] |
|
else: |
|
raise ValueError(f"{time_embedding_type} does not exist. Please make sure to use `positional`.") |
|
|
|
self.time_embedding = TimestepEmbedding( |
|
timestep_input_dim, |
|
time_embed_dim, |
|
act_fn=act_fn, |
|
post_act_fn=timestep_post_act, |
|
cond_proj_dim=time_cond_proj_dim, |
|
) |
|
|
|
|
|
if class_embed_type is None and num_class_embeds is not None: |
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) |
|
elif class_embed_type == "timestep": |
|
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) |
|
elif class_embed_type == "identity": |
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) |
|
elif class_embed_type == "projection": |
|
if projection_class_embeddings_input_dim is None: |
|
raise ValueError( |
|
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) |
|
elif class_embed_type == "simple_projection": |
|
if projection_class_embeddings_input_dim is None: |
|
raise ValueError( |
|
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" |
|
) |
|
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) |
|
else: |
|
self.class_embedding = None |
|
|
|
if time_embedding_act_fn is None: |
|
self.time_embed_act = None |
|
else: |
|
self.time_embed_act = get_activation(time_embedding_act_fn) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(only_cross_attention, bool): |
|
only_cross_attention = [only_cross_attention] * len(down_block_types) |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * len(down_block_types) |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) |
|
|
|
if isinstance(layers_per_block, int): |
|
layers_per_block = [layers_per_block] * len(down_block_types) |
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) |
|
|
|
if class_embeddings_concat: |
|
|
|
|
|
|
|
blocks_time_embed_dim = time_embed_dim * 2 |
|
else: |
|
blocks_time_embed_dim = time_embed_dim |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block[i], |
|
transformer_layers_per_block=transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim[i], |
|
num_attention_heads=num_attention_heads[i], |
|
downsample_padding=downsample_padding, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
if mid_block_type == "UNetMidBlock2DCrossAttn": |
|
self.mid_block = UNetMidBlock2DCrossAttn( |
|
transformer_layers_per_block=transformer_layers_per_block[-1], |
|
in_channels=block_out_channels[-1], |
|
temb_channels=blocks_time_embed_dim, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
cross_attention_dim=cross_attention_dim[-1], |
|
num_attention_heads=num_attention_heads[-1], |
|
resnet_groups=norm_num_groups, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
raise ValueError( |
|
f"unknown mid_block_type : {mid_block_type}. Should be `UNetMidBlock2DCrossAttn` for AudioLDM2." |
|
) |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_num_attention_heads = list(reversed(num_attention_heads)) |
|
reversed_layers_per_block = list(reversed(layers_per_block)) |
|
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) |
|
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block)) |
|
only_cross_attention = list(reversed(only_cross_attention)) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=reversed_layers_per_block[i] + 1, |
|
transformer_layers_per_block=reversed_transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=reversed_cross_attention_dim[i], |
|
num_attention_heads=reversed_num_attention_heads[i], |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
if norm_num_groups is not None: |
|
self.conv_norm_out = nn.GroupNorm( |
|
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps |
|
) |
|
|
|
self.conv_act = get_activation(act_fn) |
|
|
|
else: |
|
self.conv_norm_out = None |
|
self.conv_act = None |
|
|
|
conv_out_padding = (conv_out_kernel - 1) // 2 |
|
self.conv_out = nn.Conv2d( |
|
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding |
|
) |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor( |
|
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False |
|
): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor, _remove_lora=_remove_lora) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnAddedKVProcessor() |
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor, _remove_lora=True) |
|
|
|
|
|
def set_attention_slice(self, slice_size): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module splits the input tensor in slices to compute attention in |
|
several steps. This is useful for saving some memory in exchange for a small decrease in speed. |
|
|
|
Args: |
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If |
|
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
sliceable_head_dims = [] |
|
|
|
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
sliceable_head_dims.append(module.sliceable_head_dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_retrieve_sliceable_dims(child) |
|
|
|
|
|
for module in self.children(): |
|
fn_recursive_retrieve_sliceable_dims(module) |
|
|
|
num_sliceable_layers = len(sliceable_head_dims) |
|
|
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = [dim // 2 for dim in sliceable_head_dims] |
|
elif slice_size == "max": |
|
|
|
slice_size = num_sliceable_layers * [1] |
|
|
|
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size |
|
|
|
if len(slice_size) != len(sliceable_head_dims): |
|
raise ValueError( |
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" |
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." |
|
) |
|
|
|
for i in range(len(slice_size)): |
|
size = slice_size[i] |
|
dim = sliceable_head_dims[i] |
|
if size is not None and size > dim: |
|
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") |
|
|
|
|
|
|
|
|
|
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): |
|
if hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size.pop()) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_attention_slice(child, slice_size) |
|
|
|
reversed_slice_size = list(reversed(slice_size)) |
|
for module in self.children(): |
|
fn_recursive_set_attention_slice(module, reversed_slice_size) |
|
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
encoder_hidden_states_1: Optional[torch.Tensor] = None, |
|
encoder_attention_mask_1: Optional[torch.Tensor] = None, |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
r""" |
|
The [`AudioLDM2UNet2DConditionModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor with the following shape `(batch, channel, height, width)`. |
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.FloatTensor`): |
|
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. |
|
encoder_attention_mask (`torch.Tensor`): |
|
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If |
|
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, |
|
which adds large negative values to the attention scores corresponding to "discard" tokens. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. |
|
encoder_hidden_states_1 (`torch.FloatTensor`, *optional*): |
|
A second set of encoder hidden states with shape `(batch, sequence_length_2, feature_dim_2)`. Can be |
|
used to condition the model on a different set of embeddings to `encoder_hidden_states`. |
|
encoder_attention_mask_1 (`torch.Tensor`, *optional*): |
|
A cross-attention mask of shape `(batch, sequence_length_2)` is applied to `encoder_hidden_states_1`. |
|
If `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, |
|
which adds large negative values to the attention scores corresponding to "discard" tokens. |
|
|
|
Returns: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise |
|
a `tuple` is returned where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
logger.info("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
if encoder_attention_mask_1 is not None: |
|
encoder_attention_mask_1 = (1 - encoder_attention_mask_1.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask_1 = encoder_attention_mask_1.unsqueeze(1) |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
|
|
|
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
encoder_hidden_states_1=encoder_hidden_states_1, |
|
encoder_attention_mask_1=encoder_attention_mask_1, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
encoder_hidden_states_1=encoder_hidden_states_1, |
|
encoder_attention_mask_1=encoder_attention_mask_1, |
|
) |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
encoder_hidden_states_1=encoder_hidden_states_1, |
|
encoder_attention_mask_1=encoder_attention_mask_1, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample) |
|
|
|
|
|
def get_down_block( |
|
down_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
temb_channels, |
|
add_downsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
transformer_layers_per_block=1, |
|
num_attention_heads=None, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
downsample_padding=None, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
): |
|
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type |
|
if down_block_type == "DownBlock2D": |
|
return DownBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif down_block_type == "CrossAttnDownBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D") |
|
return CrossAttnDownBlock2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
add_downsample=add_downsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
downsample_padding=downsample_padding, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
raise ValueError(f"{down_block_type} does not exist.") |
|
|
|
|
|
def get_up_block( |
|
up_block_type, |
|
num_layers, |
|
in_channels, |
|
out_channels, |
|
prev_output_channel, |
|
temb_channels, |
|
add_upsample, |
|
resnet_eps, |
|
resnet_act_fn, |
|
transformer_layers_per_block=1, |
|
num_attention_heads=None, |
|
resnet_groups=None, |
|
cross_attention_dim=None, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
resnet_time_scale_shift="default", |
|
): |
|
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type |
|
if up_block_type == "UpBlock2D": |
|
return UpBlock2D( |
|
num_layers=num_layers, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
elif up_block_type == "CrossAttnUpBlock2D": |
|
if cross_attention_dim is None: |
|
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D") |
|
return CrossAttnUpBlock2D( |
|
num_layers=num_layers, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=temb_channels, |
|
add_upsample=add_upsample, |
|
resnet_eps=resnet_eps, |
|
resnet_act_fn=resnet_act_fn, |
|
resnet_groups=resnet_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
raise ValueError(f"{up_block_type} does not exist.") |
|
|
|
|
|
class CrossAttnDownBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
downsample_padding=1, |
|
add_downsample=True, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) |
|
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4: |
|
raise ValueError( |
|
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention " |
|
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}" |
|
) |
|
self.cross_attention_dim = cross_attention_dim |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
for j in range(len(cross_attention_dim)): |
|
attentions.append( |
|
Transformer2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=transformer_layers_per_block, |
|
cross_attention_dim=cross_attention_dim[j], |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
double_self_attention=True if cross_attention_dim[j] is None else False, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states_1: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask_1: Optional[torch.FloatTensor] = None, |
|
): |
|
output_states = () |
|
num_layers = len(self.resnets) |
|
num_attention_per_layer = len(self.attentions) // num_layers |
|
|
|
encoder_hidden_states_1 = ( |
|
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states |
|
) |
|
encoder_attention_mask_1 = ( |
|
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask |
|
) |
|
|
|
for i in range(num_layers): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.resnets[i]), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
for idx, cross_attention_dim in enumerate(self.cross_attention_dim): |
|
if cross_attention_dim is not None and idx <= 1: |
|
forward_encoder_hidden_states = encoder_hidden_states |
|
forward_encoder_attention_mask = encoder_attention_mask |
|
elif cross_attention_dim is not None and idx > 1: |
|
forward_encoder_hidden_states = encoder_hidden_states_1 |
|
forward_encoder_attention_mask = encoder_attention_mask_1 |
|
else: |
|
forward_encoder_hidden_states = None |
|
forward_encoder_attention_mask = None |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False), |
|
hidden_states, |
|
forward_encoder_hidden_states, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
forward_encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = self.resnets[i](hidden_states, temb) |
|
for idx, cross_attention_dim in enumerate(self.cross_attention_dim): |
|
if cross_attention_dim is not None and idx <= 1: |
|
forward_encoder_hidden_states = encoder_hidden_states |
|
forward_encoder_attention_mask = encoder_attention_mask |
|
elif cross_attention_dim is not None and idx > 1: |
|
forward_encoder_hidden_states = encoder_hidden_states_1 |
|
forward_encoder_attention_mask = encoder_attention_mask_1 |
|
else: |
|
forward_encoder_hidden_states = None |
|
forward_encoder_attention_mask = None |
|
hidden_states = self.attentions[i * num_attention_per_layer + idx]( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=forward_encoder_hidden_states, |
|
encoder_attention_mask=forward_encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
|
|
class UNetMidBlock2DCrossAttn(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads=1, |
|
output_scale_factor=1.0, |
|
cross_attention_dim=1280, |
|
use_linear_projection=False, |
|
upcast_attention=False, |
|
): |
|
super().__init__() |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) |
|
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4: |
|
raise ValueError( |
|
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention " |
|
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}" |
|
) |
|
self.cross_attention_dim = cross_attention_dim |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
attentions = [] |
|
|
|
for i in range(num_layers): |
|
for j in range(len(cross_attention_dim)): |
|
attentions.append( |
|
Transformer2DModel( |
|
num_attention_heads, |
|
in_channels // num_attention_heads, |
|
in_channels=in_channels, |
|
num_layers=transformer_layers_per_block, |
|
cross_attention_dim=cross_attention_dim[j], |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
double_self_attention=True if cross_attention_dim[j] is None else False, |
|
) |
|
) |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states_1: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask_1: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
hidden_states = self.resnets[0](hidden_states, temb) |
|
num_attention_per_layer = len(self.attentions) // (len(self.resnets) - 1) |
|
|
|
encoder_hidden_states_1 = ( |
|
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states |
|
) |
|
encoder_attention_mask_1 = ( |
|
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask |
|
) |
|
|
|
for i in range(len(self.resnets[1:])): |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
for idx, cross_attention_dim in enumerate(self.cross_attention_dim): |
|
if cross_attention_dim is not None and idx <= 1: |
|
forward_encoder_hidden_states = encoder_hidden_states |
|
forward_encoder_attention_mask = encoder_attention_mask |
|
elif cross_attention_dim is not None and idx > 1: |
|
forward_encoder_hidden_states = encoder_hidden_states_1 |
|
forward_encoder_attention_mask = encoder_attention_mask_1 |
|
else: |
|
forward_encoder_hidden_states = None |
|
forward_encoder_attention_mask = None |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False), |
|
hidden_states, |
|
forward_encoder_hidden_states, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
forward_encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.resnets[i + 1]), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
else: |
|
for idx, cross_attention_dim in enumerate(self.cross_attention_dim): |
|
if cross_attention_dim is not None and idx <= 1: |
|
forward_encoder_hidden_states = encoder_hidden_states |
|
forward_encoder_attention_mask = encoder_attention_mask |
|
elif cross_attention_dim is not None and idx > 1: |
|
forward_encoder_hidden_states = encoder_hidden_states_1 |
|
forward_encoder_attention_mask = encoder_attention_mask_1 |
|
else: |
|
forward_encoder_hidden_states = None |
|
forward_encoder_attention_mask = None |
|
hidden_states = self.attentions[i * num_attention_per_layer + idx]( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=forward_encoder_hidden_states, |
|
encoder_attention_mask=forward_encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
hidden_states = self.resnets[i + 1](hidden_states, temb) |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttnUpBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
prev_output_channel: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
transformer_layers_per_block: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
num_attention_heads=1, |
|
cross_attention_dim=1280, |
|
output_scale_factor=1.0, |
|
add_upsample=True, |
|
use_linear_projection=False, |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
): |
|
super().__init__() |
|
resnets = [] |
|
attentions = [] |
|
|
|
self.has_cross_attention = True |
|
self.num_attention_heads = num_attention_heads |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) |
|
if isinstance(cross_attention_dim, (list, tuple)) and len(cross_attention_dim) > 4: |
|
raise ValueError( |
|
"Only up to 4 cross-attention layers are supported. Ensure that the length of cross-attention " |
|
f"dims is less than or equal to 4. Got cross-attention dims {cross_attention_dim} of length {len(cross_attention_dim)}" |
|
) |
|
self.cross_attention_dim = cross_attention_dim |
|
|
|
for i in range(num_layers): |
|
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels |
|
resnet_in_channels = prev_output_channel if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=resnet_in_channels + res_skip_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
for j in range(len(cross_attention_dim)): |
|
attentions.append( |
|
Transformer2DModel( |
|
num_attention_heads, |
|
out_channels // num_attention_heads, |
|
in_channels=out_channels, |
|
num_layers=transformer_layers_per_block, |
|
cross_attention_dim=cross_attention_dim[j], |
|
norm_num_groups=resnet_groups, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
double_self_attention=True if cross_attention_dim[j] is None else False, |
|
) |
|
) |
|
self.attentions = nn.ModuleList(attentions) |
|
self.resnets = nn.ModuleList(resnets) |
|
|
|
if add_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states_1: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask_1: Optional[torch.FloatTensor] = None, |
|
): |
|
num_layers = len(self.resnets) |
|
num_attention_per_layer = len(self.attentions) // num_layers |
|
|
|
encoder_hidden_states_1 = ( |
|
encoder_hidden_states_1 if encoder_hidden_states_1 is not None else encoder_hidden_states |
|
) |
|
encoder_attention_mask_1 = ( |
|
encoder_attention_mask_1 if encoder_hidden_states_1 is not None else encoder_attention_mask |
|
) |
|
|
|
for i in range(num_layers): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.resnets[i]), |
|
hidden_states, |
|
temb, |
|
**ckpt_kwargs, |
|
) |
|
for idx, cross_attention_dim in enumerate(self.cross_attention_dim): |
|
if cross_attention_dim is not None and idx <= 1: |
|
forward_encoder_hidden_states = encoder_hidden_states |
|
forward_encoder_attention_mask = encoder_attention_mask |
|
elif cross_attention_dim is not None and idx > 1: |
|
forward_encoder_hidden_states = encoder_hidden_states_1 |
|
forward_encoder_attention_mask = encoder_attention_mask_1 |
|
else: |
|
forward_encoder_hidden_states = None |
|
forward_encoder_attention_mask = None |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.attentions[i * num_attention_per_layer + idx], return_dict=False), |
|
hidden_states, |
|
forward_encoder_hidden_states, |
|
None, |
|
None, |
|
cross_attention_kwargs, |
|
attention_mask, |
|
forward_encoder_attention_mask, |
|
**ckpt_kwargs, |
|
)[0] |
|
else: |
|
hidden_states = self.resnets[i](hidden_states, temb) |
|
for idx, cross_attention_dim in enumerate(self.cross_attention_dim): |
|
if cross_attention_dim is not None and idx <= 1: |
|
forward_encoder_hidden_states = encoder_hidden_states |
|
forward_encoder_attention_mask = encoder_attention_mask |
|
elif cross_attention_dim is not None and idx > 1: |
|
forward_encoder_hidden_states = encoder_hidden_states_1 |
|
forward_encoder_attention_mask = encoder_attention_mask_1 |
|
else: |
|
forward_encoder_hidden_states = None |
|
forward_encoder_attention_mask = None |
|
hidden_states = self.attentions[i * num_attention_per_layer + idx]( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
encoder_hidden_states=forward_encoder_hidden_states, |
|
encoder_attention_mask=forward_encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|