|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps |
|
from .modeling_utils import ModelMixin |
|
from .unet_1d_blocks import get_down_block, get_mid_block, get_out_block, get_up_block |
|
|
|
|
|
@dataclass |
|
class UNet1DOutput(BaseOutput): |
|
""" |
|
The output of [`UNet1DModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, sample_size)`): |
|
The hidden states output from the last layer of the model. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class UNet1DModel(ModelMixin, ConfigMixin): |
|
r""" |
|
A 1D UNet model that takes a noisy sample and a timestep and returns a sample shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
sample_size (`int`, *optional*): Default length of sample. Should be adaptable at runtime. |
|
in_channels (`int`, *optional*, defaults to 2): Number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 2): Number of channels in the output. |
|
extra_in_channels (`int`, *optional*, defaults to 0): |
|
Number of additional channels to be added to the input of the first down block. Useful for cases where the |
|
input data has more channels than what the model was initially designed for. |
|
time_embedding_type (`str`, *optional*, defaults to `"fourier"`): Type of time embedding to use. |
|
freq_shift (`float`, *optional*, defaults to 0.0): Frequency shift for Fourier time embedding. |
|
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): |
|
Whether to flip sin to cos for Fourier time embedding. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D")`): |
|
Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip")`): |
|
Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(32, 32, 64)`): |
|
Tuple of block output channels. |
|
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock1D"`): Block type for middle of UNet. |
|
out_block_type (`str`, *optional*, defaults to `None`): Optional output processing block of UNet. |
|
act_fn (`str`, *optional*, defaults to `None`): Optional activation function in UNet blocks. |
|
norm_num_groups (`int`, *optional*, defaults to 8): The number of groups for normalization. |
|
layers_per_block (`int`, *optional*, defaults to 1): The number of layers per block. |
|
downsample_each_block (`int`, *optional*, defaults to `False`): |
|
Experimental feature for using a UNet without upsampling. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: int = 65536, |
|
sample_rate: Optional[int] = None, |
|
in_channels: int = 2, |
|
out_channels: int = 2, |
|
extra_in_channels: int = 0, |
|
time_embedding_type: str = "fourier", |
|
flip_sin_to_cos: bool = True, |
|
use_timestep_embedding: bool = False, |
|
freq_shift: float = 0.0, |
|
down_block_types: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D"), |
|
up_block_types: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip"), |
|
mid_block_type: Tuple[str] = "UNetMidBlock1D", |
|
out_block_type: str = None, |
|
block_out_channels: Tuple[int] = (32, 32, 64), |
|
act_fn: str = None, |
|
norm_num_groups: int = 8, |
|
layers_per_block: int = 1, |
|
downsample_each_block: bool = False, |
|
): |
|
super().__init__() |
|
self.sample_size = sample_size |
|
|
|
|
|
if time_embedding_type == "fourier": |
|
self.time_proj = GaussianFourierProjection( |
|
embedding_size=8, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos |
|
) |
|
timestep_input_dim = 2 * block_out_channels[0] |
|
elif time_embedding_type == "positional": |
|
self.time_proj = Timesteps( |
|
block_out_channels[0], flip_sin_to_cos=flip_sin_to_cos, downscale_freq_shift=freq_shift |
|
) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
if use_timestep_embedding: |
|
time_embed_dim = block_out_channels[0] * 4 |
|
self.time_mlp = TimestepEmbedding( |
|
in_channels=timestep_input_dim, |
|
time_embed_dim=time_embed_dim, |
|
act_fn=act_fn, |
|
out_dim=block_out_channels[0], |
|
) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
self.out_block = None |
|
|
|
|
|
output_channel = in_channels |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
|
|
if i == 0: |
|
input_channel += extra_in_channels |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=block_out_channels[0], |
|
add_downsample=not is_final_block or downsample_each_block, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = get_mid_block( |
|
mid_block_type, |
|
in_channels=block_out_channels[-1], |
|
mid_channels=block_out_channels[-1], |
|
out_channels=block_out_channels[-1], |
|
embed_dim=block_out_channels[0], |
|
num_layers=layers_per_block, |
|
add_downsample=downsample_each_block, |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
if out_block_type is None: |
|
final_upsample_channels = out_channels |
|
else: |
|
final_upsample_channels = block_out_channels[0] |
|
|
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = ( |
|
reversed_block_out_channels[i + 1] if i < len(up_block_types) - 1 else final_upsample_channels |
|
) |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=layers_per_block, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
temb_channels=block_out_channels[0], |
|
add_upsample=not is_final_block, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32) |
|
self.out_block = get_out_block( |
|
out_block_type=out_block_type, |
|
num_groups_out=num_groups_out, |
|
embed_dim=block_out_channels[0], |
|
out_channels=out_channels, |
|
act_fn=act_fn, |
|
fc_dim=block_out_channels[-1] // 4, |
|
) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
return_dict: bool = True, |
|
) -> Union[UNet1DOutput, Tuple]: |
|
r""" |
|
The [`UNet1DModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor with the following shape `(batch_size, num_channels, sample_size)`. |
|
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_1d.UNet1DOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.unet_1d.UNet1DOutput`] or `tuple`: |
|
If `return_dict` is True, an [`~models.unet_1d.UNet1DOutput`] is returned, otherwise a `tuple` is |
|
returned where the first element is the sample tensor. |
|
""" |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) |
|
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
timestep_embed = self.time_proj(timesteps) |
|
if self.config.use_timestep_embedding: |
|
timestep_embed = self.time_mlp(timestep_embed) |
|
else: |
|
timestep_embed = timestep_embed[..., None] |
|
timestep_embed = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) |
|
timestep_embed = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) |
|
|
|
|
|
down_block_res_samples = () |
|
for downsample_block in self.down_blocks: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=timestep_embed) |
|
down_block_res_samples += res_samples |
|
|
|
|
|
if self.mid_block: |
|
sample = self.mid_block(sample, timestep_embed) |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
res_samples = down_block_res_samples[-1:] |
|
down_block_res_samples = down_block_res_samples[:-1] |
|
sample = upsample_block(sample, res_hidden_states_tuple=res_samples, temb=timestep_embed) |
|
|
|
|
|
if self.out_block: |
|
sample = self.out_block(sample, timestep_embed) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet1DOutput(sample=sample) |
|
|