|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput, logging |
|
from ..utils.torch_utils import randn_tensor |
|
from .scheduling_utils import SchedulerMixin |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class CMStochasticIterativeSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
|
|
|
|
class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Multistep and onestep sampling for consistency models. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 40): |
|
The number of diffusion steps to train the model. |
|
sigma_min (`float`, defaults to 0.002): |
|
Minimum noise magnitude in the sigma schedule. Defaults to 0.002 from the original implementation. |
|
sigma_max (`float`, defaults to 80.0): |
|
Maximum noise magnitude in the sigma schedule. Defaults to 80.0 from the original implementation. |
|
sigma_data (`float`, defaults to 0.5): |
|
The standard deviation of the data distribution from the EDM |
|
[paper](https://huggingface.co/papers/2206.00364). Defaults to 0.5 from the original implementation. |
|
s_noise (`float`, defaults to 1.0): |
|
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, |
|
1.011]. Defaults to 1.0 from the original implementation. |
|
rho (`float`, defaults to 7.0): |
|
The parameter for calculating the Karras sigma schedule from the EDM |
|
[paper](https://huggingface.co/papers/2206.00364). Defaults to 7.0 from the original implementation. |
|
clip_denoised (`bool`, defaults to `True`): |
|
Whether to clip the denoised outputs to `(-1, 1)`. |
|
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*): |
|
An explicit timestep schedule that can be optionally specified. The timesteps are expected to be in |
|
increasing order. |
|
""" |
|
|
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 40, |
|
sigma_min: float = 0.002, |
|
sigma_max: float = 80.0, |
|
sigma_data: float = 0.5, |
|
s_noise: float = 1.0, |
|
rho: float = 7.0, |
|
clip_denoised: bool = True, |
|
): |
|
|
|
self.init_noise_sigma = sigma_max |
|
|
|
ramp = np.linspace(0, 1, num_train_timesteps) |
|
sigmas = self._convert_to_karras(ramp) |
|
timesteps = self.sigma_to_t(sigmas) |
|
|
|
|
|
self.num_inference_steps = None |
|
self.sigmas = torch.from_numpy(sigmas) |
|
self.timesteps = torch.from_numpy(timesteps) |
|
self.custom_timesteps = False |
|
self.is_scale_input_called = False |
|
self._step_index = None |
|
self.sigmas.to("cpu") |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
return indices.item() |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increae 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
def scale_model_input( |
|
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] |
|
) -> torch.FloatTensor: |
|
""" |
|
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`float` or `torch.FloatTensor`): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5) |
|
|
|
self.is_scale_input_called = True |
|
return sample |
|
|
|
def sigma_to_t(self, sigmas: Union[float, np.ndarray]): |
|
""" |
|
Gets scaled timesteps from the Karras sigmas for input to the consistency model. |
|
|
|
Args: |
|
sigmas (`float` or `np.ndarray`): |
|
A single Karras sigma or an array of Karras sigmas. |
|
|
|
Returns: |
|
`float` or `np.ndarray`: |
|
A scaled input timestep or scaled input timestep array. |
|
""" |
|
if not isinstance(sigmas, np.ndarray): |
|
sigmas = np.array(sigmas, dtype=np.float64) |
|
|
|
timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44) |
|
|
|
return timesteps |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: Optional[int] = None, |
|
device: Union[str, torch.device] = None, |
|
timesteps: Optional[List[int]] = None, |
|
): |
|
""" |
|
Sets the timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed, |
|
`num_inference_steps` must be `None`. |
|
""" |
|
if num_inference_steps is None and timesteps is None: |
|
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.") |
|
|
|
if num_inference_steps is not None and timesteps is not None: |
|
raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.") |
|
|
|
|
|
if timesteps is not None: |
|
for i in range(1, len(timesteps)): |
|
if timesteps[i] >= timesteps[i - 1]: |
|
raise ValueError("`timesteps` must be in descending order.") |
|
|
|
if timesteps[0] >= self.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`timesteps` must start before `self.config.train_timesteps`:" |
|
f" {self.config.num_train_timesteps}." |
|
) |
|
|
|
timesteps = np.array(timesteps, dtype=np.int64) |
|
self.custom_timesteps = True |
|
else: |
|
if num_inference_steps > self.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" |
|
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" |
|
f" maximal {self.config.num_train_timesteps} timesteps." |
|
) |
|
|
|
self.num_inference_steps = num_inference_steps |
|
|
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) |
|
self.custom_timesteps = False |
|
|
|
|
|
|
|
num_train_timesteps = self.config.num_train_timesteps |
|
ramp = timesteps[::-1].copy() |
|
ramp = ramp / (num_train_timesteps - 1) |
|
sigmas = self._convert_to_karras(ramp) |
|
timesteps = self.sigma_to_t(sigmas) |
|
|
|
sigmas = np.concatenate([sigmas, [self.sigma_min]]).astype(np.float32) |
|
self.sigmas = torch.from_numpy(sigmas).to(device=device) |
|
|
|
if str(device).startswith("mps"): |
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) |
|
else: |
|
self.timesteps = torch.from_numpy(timesteps).to(device=device) |
|
|
|
self._step_index = None |
|
self.sigmas.to("cpu") |
|
|
|
|
|
def _convert_to_karras(self, ramp): |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
sigma_min: float = self.config.sigma_min |
|
sigma_max: float = self.config.sigma_max |
|
|
|
rho = self.config.rho |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
def get_scalings(self, sigma): |
|
sigma_data = self.config.sigma_data |
|
|
|
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) |
|
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 |
|
return c_skip, c_out |
|
|
|
def get_scalings_for_boundary_condition(self, sigma): |
|
""" |
|
Gets the scalings used in the consistency model parameterization (from Appendix C of the |
|
[paper](https://huggingface.co/papers/2303.01469)) to enforce boundary condition. |
|
|
|
<Tip> |
|
|
|
`epsilon` in the equations for `c_skip` and `c_out` is set to `sigma_min`. |
|
|
|
</Tip> |
|
|
|
Args: |
|
sigma (`torch.FloatTensor`): |
|
The current sigma in the Karras sigma schedule. |
|
|
|
Returns: |
|
`tuple`: |
|
A two-element tuple where `c_skip` (which weights the current sample) is the first element and `c_out` |
|
(which weights the consistency model output) is the second element. |
|
""" |
|
sigma_min = self.config.sigma_min |
|
sigma_data = self.config.sigma_data |
|
|
|
c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2) |
|
c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 |
|
return c_skip, c_out |
|
|
|
|
|
def _init_step_index(self, timestep): |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
|
|
index_candidates = (self.timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
if len(index_candidates) > 1: |
|
step_index = index_candidates[1] |
|
else: |
|
step_index = index_candidates[0] |
|
|
|
self._step_index = step_index.item() |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from the learned diffusion model. |
|
timestep (`float`): |
|
The current timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a |
|
[`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, |
|
[`~schedulers.scheduling_consistency_models.CMStochasticIterativeSchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
f" `{self.__class__}.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
sigma_min = self.config.sigma_min |
|
sigma_max = self.config.sigma_max |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
sigma = self.sigmas[self.step_index] |
|
if self.step_index + 1 < self.config.num_train_timesteps: |
|
sigma_next = self.sigmas[self.step_index + 1] |
|
else: |
|
|
|
sigma_next = self.sigmas[-1] |
|
|
|
|
|
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma) |
|
|
|
|
|
denoised = c_out * model_output + c_skip * sample |
|
if self.config.clip_denoised: |
|
denoised = denoised.clamp(-1, 1) |
|
|
|
|
|
|
|
if len(self.timesteps) > 1: |
|
noise = randn_tensor( |
|
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator |
|
) |
|
else: |
|
noise = torch.zeros_like(model_output) |
|
z = noise * self.config.s_noise |
|
|
|
sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max) |
|
|
|
|
|
|
|
prev_sample = denoised + z * (sigma_hat**2 - sigma_min**2) ** 0.5 |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample) |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|