|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...utils.accelerate_utils import apply_forward_hook |
|
from ..modeling_outputs import AutoencoderKLOutput |
|
from ..modeling_utils import ModelMixin |
|
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, MaskConditionDecoder |
|
|
|
|
|
class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin): |
|
r""" |
|
Designing a Better Asymmetric VQGAN for StableDiffusion https://arxiv.org/abs/2306.04632 . A VAE model with KL loss |
|
for encoding images into latents and decoding latent representations into images. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
Tuple of downsample block types. |
|
down_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): |
|
Tuple of down block output channels. |
|
layers_per_down_block (`int`, *optional*, defaults to `1`): |
|
Number layers for down block. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
Tuple of upsample block types. |
|
up_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): |
|
Tuple of up block output channels. |
|
layers_per_up_block (`int`, *optional*, defaults to `1`): |
|
Number layers for up block. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): Sample input size. |
|
norm_num_groups (`int`, *optional*, defaults to `32`): |
|
Number of groups to use for the first normalization layer in ResNet blocks. |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",), |
|
down_block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_down_block: int = 1, |
|
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",), |
|
up_block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_up_block: int = 1, |
|
act_fn: str = "silu", |
|
latent_channels: int = 4, |
|
norm_num_groups: int = 32, |
|
sample_size: int = 32, |
|
scaling_factor: float = 0.18215, |
|
) -> None: |
|
super().__init__() |
|
|
|
|
|
self.encoder = Encoder( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=down_block_out_channels, |
|
layers_per_block=layers_per_down_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
double_z=True, |
|
) |
|
|
|
|
|
self.decoder = MaskConditionDecoder( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=up_block_out_channels, |
|
layers_per_block=layers_per_up_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
) |
|
|
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) |
|
|
|
self.use_slicing = False |
|
self.use_tiling = False |
|
|
|
self.register_to_config(block_out_channels=up_block_out_channels) |
|
self.register_to_config(force_upcast=False) |
|
|
|
@apply_forward_hook |
|
def encode( |
|
self, x: torch.FloatTensor, return_dict: bool = True |
|
) -> Union[AutoencoderKLOutput, Tuple[torch.FloatTensor]]: |
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def _decode( |
|
self, |
|
z: torch.FloatTensor, |
|
image: Optional[torch.FloatTensor] = None, |
|
mask: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: |
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z, image, mask) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
@apply_forward_hook |
|
def decode( |
|
self, |
|
z: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
image: Optional[torch.FloatTensor] = None, |
|
mask: Optional[torch.FloatTensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: |
|
decoded = self._decode(z, image, mask).sample |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
|
|
return DecoderOutput(sample=decoded) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
mask: Optional[torch.FloatTensor] = None, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
mask (`torch.FloatTensor`, *optional*, defaults to `None`): Optional inpainting mask. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z, sample, mask).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|