Spaces:
Configuration error
Configuration error
#!/usr/bin/env python3 | |
""" | |
Extra gRPC server for MusicgenForConditionalGeneration models. | |
""" | |
from concurrent import futures | |
import argparse | |
import signal | |
import sys | |
import os | |
import time | |
import backend_pb2 | |
import backend_pb2_grpc | |
import grpc | |
from scipy.io import wavfile | |
from transformers import AutoProcessor, MusicgenForConditionalGeneration | |
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 | |
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1 | |
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) | |
# Implement the BackendServicer class with the service methods | |
class BackendServicer(backend_pb2_grpc.BackendServicer): | |
""" | |
A gRPC servicer for the backend service. | |
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding. | |
""" | |
def Health(self, request, context): | |
""" | |
A gRPC method that returns the health status of the backend service. | |
Args: | |
request: A HealthRequest object that contains the request parameters. | |
context: A grpc.ServicerContext object that provides information about the RPC. | |
Returns: | |
A Reply object that contains the health status of the backend service. | |
""" | |
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) | |
def LoadModel(self, request, context): | |
""" | |
A gRPC method that loads a model into memory. | |
Args: | |
request: A LoadModelRequest object that contains the request parameters. | |
context: A grpc.ServicerContext object that provides information about the RPC. | |
Returns: | |
A Result object that contains the result of the LoadModel operation. | |
""" | |
model_name = request.Model | |
try: | |
self.processor = AutoProcessor.from_pretrained(model_name) | |
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name) | |
except Exception as err: | |
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
return backend_pb2.Result(message="Model loaded successfully", success=True) | |
def SoundGeneration(self, request, context): | |
model_name = request.model | |
if model_name == "": | |
return backend_pb2.Result(success=False, message="request.model is required") | |
try: | |
self.processor = AutoProcessor.from_pretrained(model_name) | |
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name) | |
inputs = None | |
if request.text == "": | |
inputs = self.model.get_unconditional_inputs(num_samples=1) | |
elif request.HasField('src'): | |
# TODO SECURITY CODE GOES HERE LOL | |
# WHO KNOWS IF THIS WORKS??? | |
sample_rate, wsamples = wavfile.read('path_to_your_file.wav') | |
if request.HasField('src_divisor'): | |
wsamples = wsamples[: len(wsamples) // request.src_divisor] | |
inputs = self.processor( | |
audio=wsamples, | |
sampling_rate=sample_rate, | |
text=[request.text], | |
padding=True, | |
return_tensors="pt", | |
) | |
else: | |
inputs = self.processor( | |
text=[request.text], | |
padding=True, | |
return_tensors="pt", | |
) | |
tokens = 256 | |
if request.HasField('duration'): | |
tokens = int(request.duration * 51.2) # 256 tokens = 5 seconds, therefore 51.2 tokens is one second | |
guidance = 3.0 | |
if request.HasField('temperature'): | |
guidance = request.temperature | |
dosample = True | |
if request.HasField('sample'): | |
dosample = request.sample | |
audio_values = self.model.generate(**inputs, do_sample=dosample, guidance_scale=guidance, max_new_tokens=tokens) | |
print("[transformers-musicgen] SoundGeneration generated!", file=sys.stderr) | |
sampling_rate = self.model.config.audio_encoder.sampling_rate | |
wavfile.write(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy()) | |
print("[transformers-musicgen] SoundGeneration saved to", request.dst, file=sys.stderr) | |
print("[transformers-musicgen] SoundGeneration for", file=sys.stderr) | |
print("[transformers-musicgen] SoundGeneration requested tokens", tokens, file=sys.stderr) | |
print(request, file=sys.stderr) | |
except Exception as err: | |
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
return backend_pb2.Result(success=True) | |
# The TTS endpoint is older, and provides fewer features, but exists for compatibility reasons | |
def TTS(self, request, context): | |
model_name = request.model | |
if model_name == "": | |
return backend_pb2.Result(success=False, message="request.model is required") | |
try: | |
self.processor = AutoProcessor.from_pretrained(model_name) | |
self.model = MusicgenForConditionalGeneration.from_pretrained(model_name) | |
inputs = self.processor( | |
text=[request.text], | |
padding=True, | |
return_tensors="pt", | |
) | |
tokens = 512 # No good place to set the "length" in TTS, so use 10s as a sane default | |
audio_values = self.model.generate(**inputs, max_new_tokens=tokens) | |
print("[transformers-musicgen] TTS generated!", file=sys.stderr) | |
sampling_rate = self.model.config.audio_encoder.sampling_rate | |
write_wav(request.dst, rate=sampling_rate, data=audio_values[0, 0].numpy()) | |
print("[transformers-musicgen] TTS saved to", request.dst, file=sys.stderr) | |
print("[transformers-musicgen] TTS for", file=sys.stderr) | |
print(request, file=sys.stderr) | |
except Exception as err: | |
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
return backend_pb2.Result(success=True) | |
def serve(address): | |
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) | |
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) | |
server.add_insecure_port(address) | |
server.start() | |
print("[transformers-musicgen] Server started. Listening on: " + address, file=sys.stderr) | |
# Define the signal handler function | |
def signal_handler(sig, frame): | |
print("[transformers-musicgen] Received termination signal. Shutting down...") | |
server.stop(0) | |
sys.exit(0) | |
# Set the signal handlers for SIGINT and SIGTERM | |
signal.signal(signal.SIGINT, signal_handler) | |
signal.signal(signal.SIGTERM, signal_handler) | |
try: | |
while True: | |
time.sleep(_ONE_DAY_IN_SECONDS) | |
except KeyboardInterrupt: | |
server.stop(0) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Run the gRPC server.") | |
parser.add_argument( | |
"--addr", default="localhost:50051", help="The address to bind the server to." | |
) | |
args = parser.parse_args() | |
print(f"[transformers-musicgen] startup: {args}", file=sys.stderr) | |
serve(args.addr) | |