Spaces:
Configuration error
Configuration error
#!/usr/bin/env python3 | |
import grpc | |
from concurrent import futures | |
import time | |
import backend_pb2 | |
import backend_pb2_grpc | |
import argparse | |
import signal | |
import sys | |
import os | |
import glob | |
from pathlib import Path | |
import torch | |
import torch.nn.functional as F | |
from torch import version as torch_version | |
from exllamav2.generator import ( | |
ExLlamaV2BaseGenerator, | |
ExLlamaV2Sampler | |
) | |
from exllamav2 import ( | |
ExLlamaV2, | |
ExLlamaV2Config, | |
ExLlamaV2Cache, | |
ExLlamaV2Cache_8bit, | |
ExLlamaV2Tokenizer, | |
model_init, | |
) | |
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 | |
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1 | |
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) | |
# Implement the BackendServicer class with the service methods | |
class BackendServicer(backend_pb2_grpc.BackendServicer): | |
def Health(self, request, context): | |
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) | |
def LoadModel(self, request, context): | |
try: | |
model_directory = request.ModelFile | |
config = ExLlamaV2Config() | |
config.model_dir = model_directory | |
config.prepare() | |
model = ExLlamaV2(config) | |
cache = ExLlamaV2Cache(model, lazy=True) | |
model.load_autosplit(cache) | |
tokenizer = ExLlamaV2Tokenizer(config) | |
# Initialize generator | |
generator = ExLlamaV2BaseGenerator(model, cache, tokenizer) | |
self.generator = generator | |
generator.warmup() | |
self.model = model | |
self.tokenizer = tokenizer | |
self.cache = cache | |
except Exception as err: | |
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
return backend_pb2.Result(message="Model loaded successfully", success=True) | |
def Predict(self, request, context): | |
penalty = 1.15 | |
if request.Penalty != 0.0: | |
penalty = request.Penalty | |
settings = ExLlamaV2Sampler.Settings() | |
settings.temperature = request.Temperature | |
settings.top_k = request.TopK | |
settings.top_p = request.TopP | |
settings.token_repetition_penalty = penalty | |
settings.disallow_tokens(self.tokenizer, [self.tokenizer.eos_token_id]) | |
tokens = 512 | |
if request.Tokens != 0: | |
tokens = request.Tokens | |
output = self.generator.generate_simple( | |
request.Prompt, settings, tokens) | |
# Remove prompt from response if present | |
if request.Prompt in output: | |
output = output.replace(request.Prompt, "") | |
return backend_pb2.Result(message=bytes(output, encoding='utf-8')) | |
def PredictStream(self, request, context): | |
# Implement PredictStream RPC | |
# for reply in some_data_generator(): | |
# yield reply | |
# Not implemented yet | |
return self.Predict(request, context) | |
def serve(address): | |
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) | |
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) | |
server.add_insecure_port(address) | |
server.start() | |
print("Server started. Listening on: " + address, file=sys.stderr) | |
# Define the signal handler function | |
def signal_handler(sig, frame): | |
print("Received termination signal. Shutting down...") | |
server.stop(0) | |
sys.exit(0) | |
# Set the signal handlers for SIGINT and SIGTERM | |
signal.signal(signal.SIGINT, signal_handler) | |
signal.signal(signal.SIGTERM, signal_handler) | |
try: | |
while True: | |
time.sleep(_ONE_DAY_IN_SECONDS) | |
except KeyboardInterrupt: | |
server.stop(0) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Run the gRPC server.") | |
parser.add_argument( | |
"--addr", default="localhost:50051", help="The address to bind the server to." | |
) | |
args = parser.parse_args() | |
serve(args.addr) | |