Spaces:
Configuration error
Configuration error
#!/usr/bin/env python3 | |
from concurrent import futures | |
import argparse | |
import signal | |
import sys | |
import os | |
import time | |
import base64 | |
import grpc | |
import backend_pb2 | |
import backend_pb2_grpc | |
from auto_gptq import AutoGPTQForCausalLM | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import TextGenerationPipeline | |
_ONE_DAY_IN_SECONDS = 60 * 60 * 24 | |
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1 | |
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1')) | |
# Implement the BackendServicer class with the service methods | |
class BackendServicer(backend_pb2_grpc.BackendServicer): | |
def Health(self, request, context): | |
return backend_pb2.Reply(message=bytes("OK", 'utf-8')) | |
def LoadModel(self, request, context): | |
try: | |
device = "cuda:0" | |
if request.Device != "": | |
device = request.Device | |
# support loading local model files | |
model_path = os.path.join(os.environ.get('MODELS_PATH', './'), request.Model) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=request.TrustRemoteCode) | |
# support model `Qwen/Qwen-VL-Chat-Int4` | |
if "qwen-vl" in request.Model.lower(): | |
self.model_name = "Qwen-VL-Chat" | |
model = AutoModelForCausalLM.from_pretrained(model_path, | |
trust_remote_code=request.TrustRemoteCode, | |
device_map="auto").eval() | |
else: | |
model = AutoGPTQForCausalLM.from_quantized(model_path, | |
model_basename=request.ModelBaseName, | |
use_safetensors=True, | |
trust_remote_code=request.TrustRemoteCode, | |
device=device, | |
use_triton=request.UseTriton, | |
quantize_config=None) | |
self.model = model | |
self.tokenizer = tokenizer | |
except Exception as err: | |
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}") | |
return backend_pb2.Result(message="Model loaded successfully", success=True) | |
def Predict(self, request, context): | |
penalty = 1.0 | |
if request.Penalty != 0.0: | |
penalty = request.Penalty | |
tokens = 512 | |
if request.Tokens != 0: | |
tokens = request.Tokens | |
top_p = 0.95 | |
if request.TopP != 0.0: | |
top_p = request.TopP | |
prompt_images = self.recompile_vl_prompt(request) | |
compiled_prompt = prompt_images[0] | |
print(f"Prompt: {compiled_prompt}", file=sys.stderr) | |
# Implement Predict RPC | |
pipeline = TextGenerationPipeline( | |
model=self.model, | |
tokenizer=self.tokenizer, | |
max_new_tokens=tokens, | |
temperature=request.Temperature, | |
top_p=top_p, | |
repetition_penalty=penalty, | |
) | |
t = pipeline(compiled_prompt)[0]["generated_text"] | |
print(f"generated_text: {t}", file=sys.stderr) | |
if compiled_prompt in t: | |
t = t.replace(compiled_prompt, "") | |
# house keeping. Remove the image files from /tmp folder | |
for img_path in prompt_images[1]: | |
try: | |
os.remove(img_path) | |
except Exception as e: | |
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr) | |
return backend_pb2.Result(message=bytes(t, encoding='utf-8')) | |
def PredictStream(self, request, context): | |
# Implement PredictStream RPC | |
#for reply in some_data_generator(): | |
# yield reply | |
# Not implemented yet | |
return self.Predict(request, context) | |
def recompile_vl_prompt(self, request): | |
prompt = request.Prompt | |
image_paths = [] | |
if "qwen-vl" in self.model_name.lower(): | |
# request.Images is an array which contains base64 encoded images. Iterate the request.Images array, decode and save each image to /tmp folder with a random filename. | |
# Then, save the image file paths to an array "image_paths". | |
# read "request.Prompt", replace "[img-%d]" with the image file paths in the order they appear in "image_paths". Save the new prompt to "prompt". | |
for i, img in enumerate(request.Images): | |
timestamp = str(int(time.time() * 1000)) # Generate timestamp | |
img_path = f"/tmp/vl-{timestamp}.jpg" # Use timestamp in filename | |
with open(img_path, "wb") as f: | |
f.write(base64.b64decode(img)) | |
image_paths.append(img_path) | |
prompt = prompt.replace(f"[img-{i}]", "<img>" + img_path + "</img>,") | |
else: | |
prompt = request.Prompt | |
return (prompt, image_paths) | |
def serve(address): | |
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)) | |
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server) | |
server.add_insecure_port(address) | |
server.start() | |
print("Server started. Listening on: " + address, file=sys.stderr) | |
# Define the signal handler function | |
def signal_handler(sig, frame): | |
print("Received termination signal. Shutting down...") | |
server.stop(0) | |
sys.exit(0) | |
# Set the signal handlers for SIGINT and SIGTERM | |
signal.signal(signal.SIGINT, signal_handler) | |
signal.signal(signal.SIGTERM, signal_handler) | |
try: | |
while True: | |
time.sleep(_ONE_DAY_IN_SECONDS) | |
except KeyboardInterrupt: | |
server.stop(0) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Run the gRPC server.") | |
parser.add_argument( | |
"--addr", default="localhost:50051", help="The address to bind the server to." | |
) | |
args = parser.parse_args() | |
serve(args.addr) |