Spaces:
Sleeping
Sleeping
BarTriesHisBest
commited on
Commit
•
4276da5
1
Parent(s):
3642a91
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import torch
|
4 |
import os
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
# Load the Mistral 7B Instruct model and tokenizer from Hugging Face
|
10 |
-
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto", token=hf_token)
|
13 |
-
|
14 |
-
# Function to generate text using the Mistral model
|
15 |
-
def generate_text(prompt, max_length=500):
|
16 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
17 |
-
outputs = model.generate(**inputs, max_length=max_length, num_return_sequences=1)
|
18 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
|
20 |
# Function to generate personalized learning plan
|
21 |
def generate_learning_plan(name, age, subject, learning_style, strengths, weaknesses):
|
22 |
-
prompt = f"""
|
|
|
23 |
Name: {name}
|
24 |
Age: {age}
|
25 |
Subject: {subject}
|
@@ -32,10 +21,24 @@ def generate_learning_plan(name, age, subject, learning_style, strengths, weakne
|
|
32 |
2. Suggested resources
|
33 |
3. Personalized learning goals
|
34 |
4. Strategies to address weaknesses
|
35 |
-
5. Ways to leverage strengths
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
return
|
39 |
|
40 |
# Gradio interface
|
41 |
iface = gr.Interface(
|
@@ -54,5 +57,4 @@ iface = gr.Interface(
|
|
54 |
)
|
55 |
|
56 |
# Launch the Gradio app
|
57 |
-
|
58 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import os
|
3 |
+
from groq import Groq
|
4 |
|
5 |
+
# Initialize the Groq client
|
6 |
+
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Function to generate personalized learning plan
|
9 |
def generate_learning_plan(name, age, subject, learning_style, strengths, weaknesses):
|
10 |
+
prompt = f"""
|
11 |
+
Create a personalized learning plan for a student with the following details:
|
12 |
Name: {name}
|
13 |
Age: {age}
|
14 |
Subject: {subject}
|
|
|
21 |
2. Suggested resources
|
22 |
3. Personalized learning goals
|
23 |
4. Strategies to address weaknesses
|
24 |
+
5. Ways to leverage strengths
|
25 |
+
"""
|
26 |
+
|
27 |
+
# Call the Groq API to generate text
|
28 |
+
chat_completion = client.chat.completions.create(
|
29 |
+
messages=[
|
30 |
+
{
|
31 |
+
"role": "user",
|
32 |
+
"content": prompt,
|
33 |
+
}
|
34 |
+
],
|
35 |
+
model="mixtral-8x7b-32768", # You can change this to the model you prefer
|
36 |
+
temperature=0.7,
|
37 |
+
max_tokens=2000,
|
38 |
+
)
|
39 |
|
40 |
+
# Extract and return the generated text
|
41 |
+
return chat_completion.choices[0].message.content
|
42 |
|
43 |
# Gradio interface
|
44 |
iface = gr.Interface(
|
|
|
57 |
)
|
58 |
|
59 |
# Launch the Gradio app
|
60 |
+
iface.launch()
|
|