Bala-A87 commited on
Commit
f9eb588
1 Parent(s): 076298b

first commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ 09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth filter=lfs diff=lfs merge=lfs -text
36
+ examples/04-pizza-dad.jpg filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfce7a15e4fe6ca6f947cd109d24ead4da33de249d693583c74ab642c792e90f
3
+ size 31856609
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os, torch
3
+ from model import create_effnetb2_model
4
+ from timeit import default_timer as timer
5
+ from typing import Tuple, Dict
6
+
7
+ with open('class_names.txt', 'r') as f:
8
+ class_names = [food_name.strip() for food_name in f.readlines()]
9
+
10
+ effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=101)
11
+ effnetb2.load_state_dict(torch.load(
12
+ f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth",
13
+ map_location=torch.device('cpu')
14
+ ))
15
+
16
+ def predict(img) -> Tuple[Dict, float]:
17
+ """
18
+ Transforms and performs a prediction on img and returns
19
+ prediction and time taken.
20
+ """
21
+ start_time = timer()
22
+ img = effnetb2_transforms(img).unsqueeze(0)
23
+
24
+ effnetb2.eval()
25
+ with torch.inference_mode():
26
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
27
+ pred_labels_and_probs = {
28
+ class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
29
+ }
30
+ pred_time = round(timer()-start_time, 5)
31
+ return pred_labels_and_probs, pred_time
32
+
33
+ title = "FoodVision Big 🍔👁"
34
+ description = 'An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt).'
35
+ article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
36
+
37
+ example_list = [['examples/' + example] for example in os.listdir('examples')]
38
+
39
+ demo = gr.Interface(
40
+ fn=predict,
41
+ inputs=gr.Image(type='pil'),
42
+ outputs=[
43
+ gr.Label(num_top_classes=5, label='Predictions'),
44
+ gr.Number(label='Prediction time (s)')
45
+ ],
46
+ examples=example_list,
47
+ title=title,
48
+ description=description,
49
+ article=article
50
+ )
51
+
52
+ demo.launch()
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apple_pie
2
+ baby_back_ribs
3
+ baklava
4
+ beef_carpaccio
5
+ beef_tartare
6
+ beet_salad
7
+ beignets
8
+ bibimbap
9
+ bread_pudding
10
+ breakfast_burrito
11
+ bruschetta
12
+ caesar_salad
13
+ cannoli
14
+ caprese_salad
15
+ carrot_cake
16
+ ceviche
17
+ cheese_plate
18
+ cheesecake
19
+ chicken_curry
20
+ chicken_quesadilla
21
+ chicken_wings
22
+ chocolate_cake
23
+ chocolate_mousse
24
+ churros
25
+ clam_chowder
26
+ club_sandwich
27
+ crab_cakes
28
+ creme_brulee
29
+ croque_madame
30
+ cup_cakes
31
+ deviled_eggs
32
+ donuts
33
+ dumplings
34
+ edamame
35
+ eggs_benedict
36
+ escargots
37
+ falafel
38
+ filet_mignon
39
+ fish_and_chips
40
+ foie_gras
41
+ french_fries
42
+ french_onion_soup
43
+ french_toast
44
+ fried_calamari
45
+ fried_rice
46
+ frozen_yogurt
47
+ garlic_bread
48
+ gnocchi
49
+ greek_salad
50
+ grilled_cheese_sandwich
51
+ grilled_salmon
52
+ guacamole
53
+ gyoza
54
+ hamburger
55
+ hot_and_sour_soup
56
+ hot_dog
57
+ huevos_rancheros
58
+ hummus
59
+ ice_cream
60
+ lasagna
61
+ lobster_bisque
62
+ lobster_roll_sandwich
63
+ macaroni_and_cheese
64
+ macarons
65
+ miso_soup
66
+ mussels
67
+ nachos
68
+ omelette
69
+ onion_rings
70
+ oysters
71
+ pad_thai
72
+ paella
73
+ pancakes
74
+ panna_cotta
75
+ peking_duck
76
+ pho
77
+ pizza
78
+ pork_chop
79
+ poutine
80
+ prime_rib
81
+ pulled_pork_sandwich
82
+ ramen
83
+ ravioli
84
+ red_velvet_cake
85
+ risotto
86
+ samosa
87
+ sashimi
88
+ scallops
89
+ seaweed_salad
90
+ shrimp_and_grits
91
+ spaghetti_bolognese
92
+ spaghetti_carbonara
93
+ spring_rolls
94
+ steak
95
+ strawberry_shortcake
96
+ sushi
97
+ tacos
98
+ takoyaki
99
+ tiramisu
100
+ tuna_tartare
101
+ waffles
examples/04-pizza-dad.jpg ADDED

Git LFS Details

  • SHA256: 0f00389758009e8430ca17c9a21ebb4564c6945e0c91c58cf058e6a93d267dc8
  • Pointer size: 132 Bytes
  • Size of remote file: 2.87 MB
model.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch, torchvision
2
+ from torch import nn
3
+
4
+ def create_effnetb2_model(
5
+ num_classes: int = 3,
6
+ seed: int = 42
7
+ ):
8
+ """
9
+ Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB2 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB2 images transforms.
19
+ """
20
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
21
+ transforms = weights.transforms()
22
+ model = torchvision.models.efficientnet_b2(weights=weights)
23
+
24
+ for param in model.parameters():
25
+ param.requires_grad = False
26
+
27
+ torch.manual_seed(seed)
28
+ model.classifier = nn.Sequential(
29
+ nn.Dropout(p=0.3, inplace=True),
30
+ nn.Linear(in_features=1408, out_features=num_classes)
31
+ )
32
+
33
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch>=1.12.0
2
+ torchvision>=0.13.0
3
+ gradio>=3.1.4