Spaces:
Runtime error
Runtime error
first commit
Browse files- .gitattributes +1 -0
- 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth +3 -0
- app.py +51 -0
- examples/2582289.jpg +0 -0
- examples/3622237.jpg +0 -0
- examples/592799.jpg +0 -0
- model.py +32 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
|
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29e76c4da4682eb81e3e08537864fc811bb0d8cd1ca2690b359f074bfe0c8da6
|
3 |
+
size 31313869
|
app.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os, torch
|
3 |
+
from model import create_effnetb2_model
|
4 |
+
from timeit import default_timer as timer
|
5 |
+
from typing import Tuple, Dict
|
6 |
+
|
7 |
+
class_names = ['pizza', 'steak', 'sushi']
|
8 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
|
9 |
+
effnetb2.load_state_dict(
|
10 |
+
torch.load(
|
11 |
+
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
|
12 |
+
map_location=torch.device('cpu')
|
13 |
+
)
|
14 |
+
)
|
15 |
+
|
16 |
+
def predict(img) -> Tuple[Dict, float]:
|
17 |
+
"""
|
18 |
+
Transforms and performs a prediction on img and
|
19 |
+
returns prediction and time taken.
|
20 |
+
"""
|
21 |
+
start_time = timer()
|
22 |
+
img = effnetb2_transforms(img).unsqueeze(0)
|
23 |
+
effnetb2.eval()
|
24 |
+
with torch.inference_mode():
|
25 |
+
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
26 |
+
pred_labels_and_probs = {
|
27 |
+
class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))
|
28 |
+
}
|
29 |
+
pred_time = round(timer() - start_time, 5)
|
30 |
+
return pred_labels_and_probs, pred_time
|
31 |
+
|
32 |
+
title = "FoodVision Mini 🍕🥩🍣"
|
33 |
+
description = 'An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi.'
|
34 |
+
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
35 |
+
|
36 |
+
example_list = [['examples/' + example] for example in os.listdir('examples')]
|
37 |
+
|
38 |
+
demo = gr.Interface(
|
39 |
+
fn=predict,
|
40 |
+
inputs=gr.Image(type='pil'),
|
41 |
+
outputs=[
|
42 |
+
gr.Label(num_top_classes=3, label='Predictions'),
|
43 |
+
gr.Number(label='Prediction time(s)')
|
44 |
+
],
|
45 |
+
examples=example_list,
|
46 |
+
title=title,
|
47 |
+
description=description,
|
48 |
+
article=article
|
49 |
+
)
|
50 |
+
|
51 |
+
demo.launch()
|
examples/2582289.jpg
ADDED
examples/3622237.jpg
ADDED
examples/592799.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchvision
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
def create_effnetb2_model(
|
5 |
+
num_classes: int = 3,
|
6 |
+
seed: int = 42
|
7 |
+
):
|
8 |
+
"""
|
9 |
+
Creates an EfficientNetB2 feature extractor model and transforms.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
num_classes (int, optional): number of classes in the
|
13 |
+
classifier head. Defaults to 3.
|
14 |
+
seed (int, optional): random seed value. Defaults to 42.
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
model (torch.nn.Module): EffNetB2 feature extractor model.
|
18 |
+
transforms (torchvision.transforms): EffNetB2 image transforms.
|
19 |
+
"""
|
20 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
21 |
+
transforms = weights.transforms()
|
22 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
23 |
+
|
24 |
+
for param in model.parameters():
|
25 |
+
param.requires_grad = False
|
26 |
+
|
27 |
+
torch.manual_seed(seed)
|
28 |
+
model.classifier = nn.Sequential(
|
29 |
+
nn.Dropout(p=0.3, inplace=True),
|
30 |
+
nn.Linear(in_features=1408, out_features=num_classes)
|
31 |
+
)
|
32 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch>=1.12.0
|
2 |
+
torchvision>=0.13.0
|
3 |
+
gradio>=3.1.4
|