Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
from keras.preprocessing.sequence import pad_sequences | |
import numpy as np | |
import json | |
from huggingface_hub import from_pretrained_keras, hf_hub_download | |
# Function to convert sequences back to strings | |
def sequence_to_text(sequence, tokenizer): | |
reverse_word_map = dict(map(reversed, tokenizer.word_index.items())) | |
text = ''.join([reverse_word_map.get(i, '') for i in sequence]) | |
return text | |
# Load the model from Hugging Face repository | |
model = from_pretrained_keras("Bajiyo/Malayalam_transliteration") | |
# Load tokenizers | |
repo_id = "Bajiyo/Malayalam_transliteration" | |
source_tokenizer_path = hf_hub_download(repo_id=repo_id, filename="source_tokenizer.json") | |
target_tokenizer_path = hf_hub_download(repo_id=repo_id, filename="target_tokenizer.json") | |
with open(source_tokenizer_path) as f: | |
source_tokenizer_data = json.load(f) | |
source_tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(source_tokenizer_data) | |
with open(target_tokenizer_path) as f: | |
target_tokenizer_data = json.load(f) | |
target_tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(target_tokenizer_data) | |
max_seq_length = 100 # Set the maximum sequence length (adjust if necessary) | |
def transliterate(input_text): | |
input_sequence = source_tokenizer.texts_to_sequences([input_text]) | |
input_padded = pad_sequences(input_sequence, maxlen=max_seq_length, padding='post') | |
prediction = model.predict(input_padded) | |
predicted_sequence = np.argmax(prediction, axis=-1)[0] | |
predicted_text = sequence_to_text(predicted_sequence, target_tokenizer) | |
return predicted_text | |
# Set up Gradio interface | |
iface = gr.Interface( | |
fn=transliterate, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Malayalam text here..."), | |
outputs="text", | |
title="Malayalam to English Transliteration", | |
description="Enter Malayalam names to get their English transliterations." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |