Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ from huggingface_hub import hf_hub_download
|
|
| 8 |
# from modules.v2.vc_wrapper import VoiceConversionWrapper
|
| 9 |
|
| 10 |
# --- CONFIGURATION (UPDATE YOUR_USERNAME HERE) ---
|
| 11 |
-
# Your correct model repository ID
|
| 12 |
MODEL_REPO_ID = "Bajiyo/dhanush_seedvc"
|
| 13 |
CFM_FILE = "CFM_epoch_00651_step_21500.pth"
|
| 14 |
AR_FILE = "AR_epoch_00651_step_21500.pth"
|
|
@@ -25,32 +25,44 @@ dtype = torch.float16
|
|
| 25 |
|
| 26 |
def load_models(args):
|
| 27 |
"""
|
| 28 |
-
Loads models,
|
|
|
|
| 29 |
"""
|
| 30 |
-
# 1. Setup local directory and download checkpoints
|
| 31 |
-
LOCAL_CHECKPOINTS_DIR = "downloaded_checkpoints"
|
| 32 |
-
os.makedirs(LOCAL_CHECKPOINTS_DIR, exist_ok=True)
|
| 33 |
-
print(f"Downloading checkpoints from {MODEL_REPO_ID}...")
|
| 34 |
-
|
| 35 |
-
# Download CFM
|
| 36 |
-
cfm_local_path = hf_hub_download(
|
| 37 |
-
repo_id=MODEL_REPO_ID,
|
| 38 |
-
filename=CFM_FILE,
|
| 39 |
-
local_dir=LOCAL_CHECKPOINTS_DIR,
|
| 40 |
-
local_dir_use_symlinks=False
|
| 41 |
-
)
|
| 42 |
-
print(f"CFM checkpoint downloaded to: {cfm_local_path}")
|
| 43 |
|
| 44 |
-
#
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
# 2. Instantiate and load models
|
| 54 |
from hydra.utils import instantiate
|
| 55 |
from omegaconf import DictConfig
|
| 56 |
|
|
@@ -58,7 +70,7 @@ def load_models(args):
|
|
| 58 |
cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r")))
|
| 59 |
vc_wrapper = instantiate(cfg)
|
| 60 |
|
| 61 |
-
# Load the downloaded
|
| 62 |
vc_wrapper.load_checkpoints(
|
| 63 |
ar_checkpoint_path=ar_local_path,
|
| 64 |
cfm_checkpoint_path=cfm_local_path
|
|
@@ -85,6 +97,7 @@ def main(args):
|
|
| 85 |
vc_wrapper = load_models(args)
|
| 86 |
|
| 87 |
# Define wrapper function for Gradio. NO DECORATORS HERE.
|
|
|
|
| 88 |
def convert_voice_wrapper(source_audio_path, target_audio_path, diffusion_steps,
|
| 89 |
length_adjust, intelligibility_cfg_rate, similarity_cfg_rate,
|
| 90 |
top_p, temperature, repetition_penalty, convert_style,
|
|
@@ -149,7 +162,7 @@ def main(args):
|
|
| 149 |
|
| 150 |
# Launch the Gradio interface
|
| 151 |
gr.Interface(
|
| 152 |
-
fn=convert_voice_wrapper,
|
| 153 |
description=description,
|
| 154 |
inputs=inputs,
|
| 155 |
outputs=outputs,
|
|
@@ -162,10 +175,10 @@ if __name__ == "__main__":
|
|
| 162 |
import argparse
|
| 163 |
parser = argparse.ArgumentParser()
|
| 164 |
parser.add_argument("--compile", action="store_true", help="Compile the model using torch.compile")
|
| 165 |
-
# These
|
| 166 |
parser.add_argument("--ar-checkpoint-path", type=str, default=None,
|
| 167 |
-
help="Path to custom checkpoint file
|
| 168 |
parser.add_argument("--cfm-checkpoint-path", type=str, default=None,
|
| 169 |
-
help="Path to custom checkpoint file
|
| 170 |
args = parser.parse_args()
|
| 171 |
main(args)
|
|
|
|
| 8 |
# from modules.v2.vc_wrapper import VoiceConversionWrapper
|
| 9 |
|
| 10 |
# --- CONFIGURATION (UPDATE YOUR_USERNAME HERE) ---
|
| 11 |
+
# Your correct model repository ID for automatic download in the Space
|
| 12 |
MODEL_REPO_ID = "Bajiyo/dhanush_seedvc"
|
| 13 |
CFM_FILE = "CFM_epoch_00651_step_21500.pth"
|
| 14 |
AR_FILE = "AR_epoch_00651_step_21500.pth"
|
|
|
|
| 25 |
|
| 26 |
def load_models(args):
|
| 27 |
"""
|
| 28 |
+
Loads models, prioritizing command-line arguments for local paths,
|
| 29 |
+
and falling back to Hugging Face Hub download for the Space environment.
|
| 30 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
# --- 1. Determine Checkpoint Paths ---
|
| 33 |
+
if args.cfm_checkpoint_path:
|
| 34 |
+
cfm_local_path = args.cfm_checkpoint_path
|
| 35 |
+
print(f"Using local CFM checkpoint path from arguments: {cfm_local_path}")
|
| 36 |
+
else:
|
| 37 |
+
# Default behavior for Space: download from HF
|
| 38 |
+
LOCAL_CHECKPOINTS_DIR = "downloaded_checkpoints"
|
| 39 |
+
os.makedirs(LOCAL_CHECKPOINTS_DIR, exist_ok=True)
|
| 40 |
+
print(f"Arguments not provided. Downloading CFM checkpoint from {MODEL_REPO_ID}...")
|
| 41 |
+
cfm_local_path = hf_hub_download(
|
| 42 |
+
repo_id=MODEL_REPO_ID,
|
| 43 |
+
filename=CFM_FILE,
|
| 44 |
+
local_dir=LOCAL_CHECKPOINTS_DIR,
|
| 45 |
+
local_dir_use_symlinks=False
|
| 46 |
+
)
|
| 47 |
+
print(f"CFM checkpoint downloaded to: {cfm_local_path}")
|
| 48 |
+
|
| 49 |
+
if args.ar_checkpoint_path:
|
| 50 |
+
ar_local_path = args.ar_checkpoint_path
|
| 51 |
+
print(f"Using local AR checkpoint path from arguments: {ar_local_path}")
|
| 52 |
+
else:
|
| 53 |
+
# Default behavior for Space: download from HF
|
| 54 |
+
LOCAL_CHECKPOINTS_DIR = "downloaded_checkpoints"
|
| 55 |
+
os.makedirs(LOCAL_CHECKPOINTS_DIR, exist_ok=True) # Ensure dir exists
|
| 56 |
+
print(f"Arguments not provided. Downloading AR checkpoint from {MODEL_REPO_ID}...")
|
| 57 |
+
ar_local_path = hf_hub_download(
|
| 58 |
+
repo_id=MODEL_REPO_ID,
|
| 59 |
+
filename=AR_FILE,
|
| 60 |
+
local_dir=LOCAL_CHECKPOINTS_DIR,
|
| 61 |
+
local_dir_use_symlinks=False
|
| 62 |
+
)
|
| 63 |
+
print(f"AR checkpoint downloaded to: {ar_local_path}")
|
| 64 |
|
| 65 |
+
# --- 2. Instantiate and load models ---
|
| 66 |
from hydra.utils import instantiate
|
| 67 |
from omegaconf import DictConfig
|
| 68 |
|
|
|
|
| 70 |
cfg = DictConfig(yaml.safe_load(open("configs/v2/vc_wrapper.yaml", "r")))
|
| 71 |
vc_wrapper = instantiate(cfg)
|
| 72 |
|
| 73 |
+
# Load the determined checkpoints (either local paths or downloaded HF paths)
|
| 74 |
vc_wrapper.load_checkpoints(
|
| 75 |
ar_checkpoint_path=ar_local_path,
|
| 76 |
cfm_checkpoint_path=cfm_local_path
|
|
|
|
| 97 |
vc_wrapper = load_models(args)
|
| 98 |
|
| 99 |
# Define wrapper function for Gradio. NO DECORATORS HERE.
|
| 100 |
+
# This wrapper ensures the streaming output works correctly in the Gradio Interface.
|
| 101 |
def convert_voice_wrapper(source_audio_path, target_audio_path, diffusion_steps,
|
| 102 |
length_adjust, intelligibility_cfg_rate, similarity_cfg_rate,
|
| 103 |
top_p, temperature, repetition_penalty, convert_style,
|
|
|
|
| 162 |
|
| 163 |
# Launch the Gradio interface
|
| 164 |
gr.Interface(
|
| 165 |
+
fn=convert_voice_wrapper, # Using the wrapper for reliable streaming
|
| 166 |
description=description,
|
| 167 |
inputs=inputs,
|
| 168 |
outputs=outputs,
|
|
|
|
| 175 |
import argparse
|
| 176 |
parser = argparse.ArgumentParser()
|
| 177 |
parser.add_argument("--compile", action="store_true", help="Compile the model using torch.compile")
|
| 178 |
+
# These are the arguments that allow you to run the script locally with specific paths
|
| 179 |
parser.add_argument("--ar-checkpoint-path", type=str, default=None,
|
| 180 |
+
help="Path to custom AR checkpoint file. Defaults to HF download in Space.")
|
| 181 |
parser.add_argument("--cfm-checkpoint-path", type=str, default=None,
|
| 182 |
+
help="Path to custom CFM checkpoint file. Defaults to HF download in Space.")
|
| 183 |
args = parser.parse_args()
|
| 184 |
main(args)
|