|  | import gradio as gr | 
					
						
						|  | import numpy as np | 
					
						
						|  | import random | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from diffusers import DiffusionPipeline | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | device = "cuda" if torch.cuda.is_available() else "cpu" | 
					
						
						|  | model_repo_id = "stabilityai/sdxl-turbo" | 
					
						
						|  |  | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | torch_dtype = torch.float16 | 
					
						
						|  | else: | 
					
						
						|  | torch_dtype = torch.float32 | 
					
						
						|  |  | 
					
						
						|  | pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | 
					
						
						|  | pipe = pipe.to(device) | 
					
						
						|  |  | 
					
						
						|  | MAX_SEED = np.iinfo(np.int32).max | 
					
						
						|  | MAX_IMAGE_SIZE = 1024 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def infer( | 
					
						
						|  | prompt, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | seed, | 
					
						
						|  | randomize_seed, | 
					
						
						|  | width, | 
					
						
						|  | height, | 
					
						
						|  | guidance_scale, | 
					
						
						|  | num_inference_steps, | 
					
						
						|  | progress=gr.Progress(track_tqdm=True), | 
					
						
						|  | ): | 
					
						
						|  | if randomize_seed: | 
					
						
						|  | seed = random.randint(0, MAX_SEED) | 
					
						
						|  |  | 
					
						
						|  | generator = torch.Generator().manual_seed(seed) | 
					
						
						|  |  | 
					
						
						|  | image = pipe( | 
					
						
						|  | prompt=prompt, | 
					
						
						|  | negative_prompt=negative_prompt, | 
					
						
						|  | guidance_scale=guidance_scale, | 
					
						
						|  | num_inference_steps=num_inference_steps, | 
					
						
						|  | width=width, | 
					
						
						|  | height=height, | 
					
						
						|  | generator=generator, | 
					
						
						|  | ).images[0] | 
					
						
						|  |  | 
					
						
						|  | return image, seed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | examples = [ | 
					
						
						|  | "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | 
					
						
						|  | "An astronaut riding a green horse", | 
					
						
						|  | "A delicious ceviche cheesecake slice", | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | css = """ | 
					
						
						|  | #col-container { | 
					
						
						|  | margin: 0 auto; | 
					
						
						|  | max-width: 640px; | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | with gr.Blocks(css=css) as demo: | 
					
						
						|  | with gr.Column(elem_id="col-container"): | 
					
						
						|  | gr.Markdown(" # Text-to-Image Gradio Template") | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | prompt = gr.Text( | 
					
						
						|  | label="Prompt", | 
					
						
						|  | show_label=False, | 
					
						
						|  | max_lines=1, | 
					
						
						|  | placeholder="Enter your prompt", | 
					
						
						|  | container=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | run_button = gr.Button("Run", scale=0, variant="primary") | 
					
						
						|  |  | 
					
						
						|  | result = gr.Image(label="Result", show_label=False) | 
					
						
						|  |  | 
					
						
						|  | with gr.Accordion("Advanced Settings", open=False): | 
					
						
						|  | negative_prompt = gr.Text( | 
					
						
						|  | label="Negative prompt", | 
					
						
						|  | max_lines=1, | 
					
						
						|  | placeholder="Enter a negative prompt", | 
					
						
						|  | visible=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | seed = gr.Slider( | 
					
						
						|  | label="Seed", | 
					
						
						|  | minimum=0, | 
					
						
						|  | maximum=MAX_SEED, | 
					
						
						|  | step=1, | 
					
						
						|  | value=0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | width = gr.Slider( | 
					
						
						|  | label="Width", | 
					
						
						|  | minimum=256, | 
					
						
						|  | maximum=MAX_IMAGE_SIZE, | 
					
						
						|  | step=32, | 
					
						
						|  | value=1024, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | height = gr.Slider( | 
					
						
						|  | label="Height", | 
					
						
						|  | minimum=256, | 
					
						
						|  | maximum=MAX_IMAGE_SIZE, | 
					
						
						|  | step=32, | 
					
						
						|  | value=1024, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | guidance_scale = gr.Slider( | 
					
						
						|  | label="Guidance scale", | 
					
						
						|  | minimum=0.0, | 
					
						
						|  | maximum=10.0, | 
					
						
						|  | step=0.1, | 
					
						
						|  | value=0.0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = gr.Slider( | 
					
						
						|  | label="Number of inference steps", | 
					
						
						|  | minimum=1, | 
					
						
						|  | maximum=50, | 
					
						
						|  | step=1, | 
					
						
						|  | value=2, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | gr.Examples(examples=examples, inputs=[prompt]) | 
					
						
						|  | gr.on( | 
					
						
						|  | triggers=[run_button.click, prompt.submit], | 
					
						
						|  | fn=infer, | 
					
						
						|  | inputs=[ | 
					
						
						|  | prompt, | 
					
						
						|  | negative_prompt, | 
					
						
						|  | seed, | 
					
						
						|  | randomize_seed, | 
					
						
						|  | width, | 
					
						
						|  | height, | 
					
						
						|  | guidance_scale, | 
					
						
						|  | num_inference_steps, | 
					
						
						|  | ], | 
					
						
						|  | outputs=[result, seed], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | demo.launch() | 
					
						
						|  |  |