ConsistencyTTA / diffusers /scheduling_heun_discrete.py
Bai-YT
Gradio App for ConsistencyTTA V1
66982e9
raw
history blame
15.5 kB
# Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
### This file has been modified for the purposes of the ConsistencyTTA generation. ###
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from .utils.configuration_utils import ConfigMixin, register_to_config
from .utils.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines
the cumulative product of (1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the
cumulative product of (1-beta) up to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`):
the maximum beta to use; use values lower than 1 to prevent singularities.
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
def alpha_bar(time_step):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules.
Based on the original k-diffusion implementation by Katherine Crowson:
https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/
k_diffusion/sampling.py#L90
[`~ConfigMixin`] takes care of storing all config attributes that are passed
in the scheduler's `__init__` function, such as `num_train_timesteps`.
They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the
[`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`):
number of diffusion steps used to train the model.
beta_start (`float`):
the starting `beta` value of inference.
beta_end (`float`):
the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping
the model. Choose from `linear` or `scaled_linear`.
trained_betas (`np.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass
`beta_start`, `beta_end` etc.
options to clip the variance used when adding noise to the denoised sample.
Choose from `fixed_small`, `fixed_small_log`, `fixed_large`,
`fixed_large_log`, `learned` or `learned_range`.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of
`epsilon` (predicting the noise of the diffusion process),
`sample` (directly predicting the noisy sample`), or
`v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
use_karras_sigmas: Optional[bool] = False,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(
beta_start, beta_end, num_train_timesteps, dtype=torch.float32
)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start ** 0.5, beta_end ** 0.5,
num_train_timesteps, dtype=torch.float32
) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(
f"{beta_schedule} does is not implemented for {self.__class__}"
)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# set all values
self.use_karras_sigmas = use_karras_sigmas
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
def index_for_timestep(self, timestep):
"""Get the first / last index at which self.timesteps == timestep
"""
assert len(timestep.shape) < 2
avail_timesteps = self.timesteps.reshape(1, -1).to(timestep.device)
mask = (avail_timesteps == timestep.reshape(-1, 1))
assert (mask.sum(dim=1) != 0).all(), f"timestep: {timestep.tolist()}"
mask = mask.cpu() * torch.arange(mask.shape[1]).reshape(1, -1)
if self.state_in_first_order:
return mask.argmax(dim=1).numpy()
else:
return mask.argmax(dim=1).numpy() - 1
def scale_model_input(
self,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
) -> torch.FloatTensor:
"""
Ensures interchangeability with schedulers that need to scale the
denoising model input depending on the current timestep.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`int`, optional): current timestep
Returns:
`torch.FloatTensor`: scaled input sample
"""
if not torch.is_tensor(timestep):
timestep = torch.tensor(timestep)
timestep = timestep.to(sample.device).reshape(-1)
step_index = self.index_for_timestep(timestep)
sigma = self.sigmas[step_index].reshape(-1, 1, 1, 1).to(sample.device)
sample = sample / ((sigma ** 2 + 1) ** 0.5) # sample *= sqrt_alpha_prod
return sample
def set_timesteps(
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
):
"""
Sets the timesteps used for the diffusion chain.
Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples
with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to.
If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
timesteps = np.linspace(
0, num_train_timesteps - 1, num_inference_steps, dtype=float
)[::-1].copy()
# sigma^2 = beta / alpha
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.use_karras_sigmas:
sigmas = self._convert_to_karras(
in_sigmas=sigmas, num_inference_steps=self.num_inference_steps
)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(device=device)
self.sigmas = torch.cat(
[sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]]
)
# standard deviation of the initial noise distribution
self.init_noise_sigma = self.sigmas.max()
timesteps = torch.from_numpy(timesteps)
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
if 'mps' in str(device):
timesteps = timesteps.float()
self.timesteps = timesteps.to(device)
# empty dt and derivative
self.prev_derivative = None
self.dt = None
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(sigma)
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(
max=log_sigmas.shape[0] - 2
)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
def _convert_to_karras(
self, in_sigmas: torch.FloatTensor, num_inference_steps
) -> torch.FloatTensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = in_sigmas[-1].item()
sigma_max: float = in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def state_in_first_order(self):
return self.dt is None
def step(
self,
model_output: Union[torch.FloatTensor, np.ndarray],
timestep: Union[float, torch.FloatTensor],
sample: Union[torch.FloatTensor, np.ndarray],
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE.
Core function to propagate the diffusion process from the learned
model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor` or `np.ndarray`):
direct output from learned diffusion model.
timestep (`int`):
current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor` or `np.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`):
option for returning tuple rather than SchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple,
the first element is the sample tensor.
"""
if not torch.is_tensor(timestep):
timestep = torch.tensor(timestep)
timestep = timestep.reshape(-1).to(sample.device)
step_index = self.index_for_timestep(timestep)
if self.state_in_first_order:
sigma = self.sigmas[step_index]
sigma_next = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
sigma = self.sigmas[step_index - 1]
sigma_next = self.sigmas[step_index]
sigma = sigma.reshape(-1, 1, 1, 1).to(sample.device)
sigma_next = sigma_next.reshape(-1, 1, 1, 1).to(sample.device)
sigma_input = sigma if self.state_in_first_order else sigma_next
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
alpha_prod = 1 / (sigma_input ** 2 + 1)
pred_original_sample = (
sample * alpha_prod - model_output * (sigma_input * alpha_prod ** .5)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} "
"must be one of `epsilon`, or `v_prediction`"
)
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
derivative = (sample - pred_original_sample) / sigma
# 3. delta timestep
dt = sigma_next - sigma
# store for 2nd order step
self.prev_derivative = derivative
self.dt = dt
self.sample = sample
else:
# 2. 2nd order / Heun's method
derivative = (sample - pred_original_sample) / sigma_next
derivative = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
dt = self.dt
sample = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
self.prev_derivative = None
self.dt = None
self.sample = None
prev_sample = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
self.sigmas = self.sigmas.to(
device=original_samples.device, dtype=original_samples.dtype
)
self.timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = self.index_for_timestep(timesteps)
sigma = self.sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps