Spaces:
Runtime error
Runtime error
feat: new model
Browse files
main.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
import logging
|
2 |
import uvicorn
|
|
|
|
|
|
|
3 |
from fastapi import FastAPI
|
4 |
from pydantic import BaseModel
|
5 |
from transformers import pipeline
|
@@ -13,6 +16,17 @@ logging.basicConfig(
|
|
13 |
datefmt='%Y-%m-%d %H:%M:%S'
|
14 |
)
|
15 |
classifier = pipeline("zero-shot-classification", model="models/classificator", use_fast=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
app = FastAPI()
|
17 |
|
18 |
|
@@ -28,16 +42,46 @@ class ResponseData(BaseModel):
|
|
28 |
scores: list[float]
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
@app.post("/classify", response_model=ResponseData, tags=["Classificator"])
|
32 |
async def classify_text(data: RequestData):
|
33 |
-
result =
|
34 |
logging.info(result)
|
35 |
-
|
36 |
return result
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
@app.get("/ping", tags=["TEST"])
|
40 |
-
def ping():
|
41 |
return "pong"
|
42 |
|
43 |
|
|
|
1 |
import logging
|
2 |
import uvicorn
|
3 |
+
from transformers import AutoTokenizer, AutoModel
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
from fastapi import FastAPI
|
7 |
from pydantic import BaseModel
|
8 |
from transformers import pipeline
|
|
|
16 |
datefmt='%Y-%m-%d %H:%M:%S'
|
17 |
)
|
18 |
classifier = pipeline("zero-shot-classification", model="models/classificator", use_fast=False)
|
19 |
+
|
20 |
+
|
21 |
+
def mean_pooling(model_output, attention_mask):
|
22 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
23 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
24 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
25 |
+
|
26 |
+
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
28 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
29 |
+
|
30 |
app = FastAPI()
|
31 |
|
32 |
|
|
|
42 |
scores: list[float]
|
43 |
|
44 |
|
45 |
+
def classify(data: RequestData):
|
46 |
+
return classifier(data.sequence, data.labels, multi_label=data.multiLabel)
|
47 |
+
|
48 |
+
|
49 |
+
def similarity(data: RequestData):
|
50 |
+
sentences = [data.sequence]
|
51 |
+
sentences.extend(data.labels)
|
52 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
model_output = model(**encoded_input)
|
56 |
+
|
57 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
58 |
+
|
59 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
60 |
+
|
61 |
+
text_probs = sentence_embeddings[:1] @ sentence_embeddings[1:].T
|
62 |
+
return text_probs.tolist()[0]
|
63 |
+
|
64 |
+
|
65 |
@app.post("/classify", response_model=ResponseData, tags=["Classificator"])
|
66 |
async def classify_text(data: RequestData):
|
67 |
+
result = classify(data)
|
68 |
logging.info(result)
|
|
|
69 |
return result
|
70 |
|
71 |
|
72 |
+
@app.post("/similarity", response_model=ResponseData, tags=["Similarity"])
|
73 |
+
async def classify_text(data: RequestData):
|
74 |
+
result = similarity(data)
|
75 |
+
logging.info(result)
|
76 |
+
return ResponseData.model_validate({
|
77 |
+
"sequence": data.sequence,
|
78 |
+
"labels": data.labels,
|
79 |
+
"scores": result
|
80 |
+
})
|
81 |
+
|
82 |
+
|
83 |
@app.get("/ping", tags=["TEST"])
|
84 |
+
async def ping():
|
85 |
return "pong"
|
86 |
|
87 |
|