Spaces:
Runtime error
Runtime error
import logging | |
import uvicorn | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import torch.nn.functional as F | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from transformers import pipeline | |
import os | |
os.environ['TRANSFORMERS_CACHE'] = '/blabla/cache/' | |
logging.basicConfig( | |
format='%(asctime)s.%(msecs)03d %(levelname)-8s %(message)s', | |
level=logging.DEBUG, | |
datefmt='%Y-%m-%d %H:%M:%S' | |
) | |
classifier = pipeline("zero-shot-classification", model="models/classificator", use_fast=False) | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] # First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
tokenizer = AutoTokenizer.from_pretrained('models/all-MiniLM-L6-v2') | |
model = AutoModel.from_pretrained('models/all-MiniLM-L6-v2') | |
app = FastAPI() | |
class RequestData(BaseModel): | |
multiLabel: bool | |
sequence: str | |
labels: list[str] | |
class ResponseData(BaseModel): | |
sequence: str | |
labels: list[str] | |
scores: list[float] | |
def classify(data: RequestData): | |
return classifier(data.sequence, data.labels, multi_label=data.multiLabel) | |
def similarity(data: RequestData): | |
sentences = [data.sequence] | |
sentences.extend(data.labels) | |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
with torch.no_grad(): | |
model_output = model(**encoded_input) | |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1) | |
text_probs = sentence_embeddings[:1] @ sentence_embeddings[1:].T | |
return text_probs.tolist()[0] | |
async def classify_text(data: RequestData): | |
result = classify(data) | |
logging.info(result) | |
return result | |
async def classify_text(data: RequestData): | |
result = similarity(data) | |
logging.info(result) | |
return ResponseData.model_validate({ | |
"sequence": data.sequence, | |
"labels": data.labels, | |
"scores": result | |
}) | |
async def ping(): | |
return "pong" | |
if __name__ == "__main__": | |
uvicorn.run(app, host="127.0.0.1", port=8000) | |