Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import pipeline, AutoTokenizer
|
3 |
import numpy as np
|
4 |
from pydub import AudioSegment
|
|
|
5 |
|
6 |
# Load the pipeline for speech recognition and translation
|
7 |
pipe = pipeline(
|
@@ -12,18 +13,19 @@ pipe = pipeline(
|
|
12 |
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
|
13 |
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
14 |
|
15 |
-
def translate_speech(
|
16 |
print(f"Type of audio: {type(audio_data_tuple)}, Value of audio: {audio_data_tuple}") # Debug line
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
23 |
|
24 |
# Normalize the audio data to the range [-1, 1]
|
25 |
audio_data_normalized = audio_data / np.iinfo(audio_data.dtype).max
|
26 |
-
|
27 |
# Convert the normalized audio data to float64
|
28 |
audio_data_float64 = audio_data_normalized.astype(np.float64)
|
29 |
|
@@ -82,7 +84,7 @@ def translate_speech(audio_data_tuple):
|
|
82 |
# Define the Gradio interface
|
83 |
iface = gr.Interface(
|
84 |
fn=translate_speech,
|
85 |
-
inputs=gr.inputs.Audio(source="microphone"), # Change this line
|
86 |
outputs=gr.outputs.Audio(type="numpy"),
|
87 |
title="Hausa to English Translation",
|
88 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|
|
|
2 |
from transformers import pipeline, AutoTokenizer
|
3 |
import numpy as np
|
4 |
from pydub import AudioSegment
|
5 |
+
import librosa
|
6 |
|
7 |
# Load the pipeline for speech recognition and translation
|
8 |
pipe = pipeline(
|
|
|
13 |
translator = pipeline("text2text-generation", model="Baghdad99/saad-hausa-text-to-english-text")
|
14 |
tts = pipeline("text-to-speech", model="Baghdad99/english_voice_tts")
|
15 |
|
16 |
+
def translate_speech(audio_input):
|
17 |
print(f"Type of audio: {type(audio_data_tuple)}, Value of audio: {audio_data_tuple}") # Debug line
|
18 |
+
# Check if the input is a tuple (recorded audio) or a string (uploaded file)
|
19 |
+
if isinstance(audio_input, tuple):
|
20 |
+
# Extract the audio data from the tuple
|
21 |
+
sample_rate, audio_data = audio_input
|
22 |
+
else:
|
23 |
+
# Load the audio file as a floating point time series
|
24 |
+
audio_data, sample_rate = librosa.load(audio_input, sr=None)
|
25 |
|
26 |
# Normalize the audio data to the range [-1, 1]
|
27 |
audio_data_normalized = audio_data / np.iinfo(audio_data.dtype).max
|
28 |
+
|
29 |
# Convert the normalized audio data to float64
|
30 |
audio_data_float64 = audio_data_normalized.astype(np.float64)
|
31 |
|
|
|
84 |
# Define the Gradio interface
|
85 |
iface = gr.Interface(
|
86 |
fn=translate_speech,
|
87 |
+
inputs=gr.inputs.Audio(source="microphone", type="file"), # Change this line
|
88 |
outputs=gr.outputs.Audio(type="numpy"),
|
89 |
title="Hausa to English Translation",
|
90 |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
|