Update app.py
Browse files
app.py
CHANGED
@@ -14,12 +14,15 @@ tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts")
|
|
14 |
tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts")
|
15 |
|
16 |
def translate_speech(speech):
|
|
|
|
|
|
|
17 |
# Convert stereo to mono if necessary
|
18 |
-
if len(
|
19 |
-
|
20 |
|
21 |
# Transcribe the speech to text
|
22 |
-
inputs = asr_processor(
|
23 |
logits = asr_model(inputs.input_values).logits
|
24 |
predicted_ids = torch.argmax(logits, dim=-1)
|
25 |
transcription = asr_processor.decode(predicted_ids[0])
|
@@ -34,6 +37,7 @@ def translate_speech(speech):
|
|
34 |
|
35 |
return audio
|
36 |
|
|
|
37 |
# Define the Gradio interface
|
38 |
iface = gr.Interface(fn=translate_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio")
|
39 |
iface.launch()
|
|
|
14 |
tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts")
|
15 |
|
16 |
def translate_speech(speech):
|
17 |
+
# Extract the audio signal and sample rate
|
18 |
+
audio_signal, sample_rate = speech
|
19 |
+
|
20 |
# Convert stereo to mono if necessary
|
21 |
+
if len(audio_signal.shape) > 1:
|
22 |
+
audio_signal = audio_signal.mean(axis=0)
|
23 |
|
24 |
# Transcribe the speech to text
|
25 |
+
inputs = asr_processor(audio_signal, return_tensors="pt", padding=True)
|
26 |
logits = asr_model(inputs.input_values).logits
|
27 |
predicted_ids = torch.argmax(logits, dim=-1)
|
28 |
transcription = asr_processor.decode(predicted_ids[0])
|
|
|
37 |
|
38 |
return audio
|
39 |
|
40 |
+
|
41 |
# Define the Gradio interface
|
42 |
iface = gr.Interface(fn=translate_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio")
|
43 |
iface.launch()
|