ha-en / app.py
Baghdad99's picture
Update app.py
22cb79a
raw
history blame
2.79 kB
import gradio as gr
import requests
import soundfile as sf
import numpy as np
import tempfile
from pydub import AudioSegment
# Define the Hugging Face Inference API URLs and headers
ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text"
TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts"
TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text"
headers = {"Authorization": "Bearer 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"}
# Define the function to query the Hugging Face Inference API
def query(api_url, payload):
response = requests.post(api_url, headers=headers, json=payload)
return response.json()
# Define the function to translate speech
def translate_speech(audio):
print(f"Type of audio: {type(audio)}, Value of audio: {audio}") # Debug line
# audio is a tuple (np.ndarray, int), we need to save it as a file
sample_rate, audio_data = audio
if isinstance(audio_data, np.ndarray) and len(audio_data.shape) == 1: # if audio_data is 1D, reshape it to 2D
audio_data = np.reshape(audio_data, (-1, 1))
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
sf.write(f, audio_data, sample_rate)
audio_file = f.name
# Use the ASR pipeline to transcribe the audio
with open(audio_file, "rb") as f:
data = f.read()
response = requests.post(ASR_API_URL, headers=headers, data=data)
output = response.json()
# Check if the output contains 'text'
if 'text' in output:
transcription = output["text"]
else:
print("The output does not contain 'text'")
return
# Use the translation pipeline to translate the transcription
translated_text = query(TRANSLATION_API_URL, {"inputs": transcription})
# Use the TTS pipeline to synthesize the translated text
response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text})
audio_bytes = response.content
# Convert the audio bytes to an audio segment
audio_segment = AudioSegment.from_file(io.BytesIO(audio_bytes), format="wav")
# Convert the audio segment to a numpy array
audio_data = np.array(audio_segment.get_array_of_samples())
if audio_segment.channels == 2:
audio_data = audio_data.reshape((-1, 2))
return audio_data
# Define the Gradio interface
iface = gr.Interface(
fn=translate_speech,
inputs=gr.inputs.Audio(source="microphone", type="numpy"),
outputs=gr.outputs.Audio(type="numpy"),
title="Hausa to English Translation",
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis."
)
iface.launch()