Baghdad99 commited on
Commit
b2c7d3a
·
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -62
app.py CHANGED
@@ -1,72 +1,36 @@
1
  import gradio as gr
2
- import numpy as np
3
- import torch
4
- from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
 
7
 
 
 
 
8
 
9
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
 
 
10
 
11
- # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
 
 
 
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
 
 
 
23
 
24
- def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
- return outputs["text"]
27
-
28
-
29
- def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
- return speech.cpu()
33
-
34
-
35
- def speech_to_speech_translation(audio):
36
- translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
38
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
-
41
-
42
- title = "Cascaded STST"
43
- description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
- ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
- """
49
-
50
- demo = gr.Blocks()
51
-
52
- mic_translate = gr.Interface(
53
- fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
- title=title,
57
- description=description,
58
- )
59
-
60
- file_translate = gr.Interface(
61
- fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
- title=title,
66
- description=description,
67
- )
68
-
69
- with demo:
70
- gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
-
72
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTextToWaveform
 
 
3
 
4
+ # Load your pretrained models
5
+ asr_model = Wav2Vec2ForCTC.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text")
6
+ asr_processor = Wav2Vec2Processor.from_pretrained("Baghdad99/saad-speech-recognition-hausa-audio-to-text")
7
 
8
+ # Load the Hausa translation model
9
+ translation_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/saad-hausa-text-to-english-text")
10
+ translation_model = AutoModelForSeq2SeqLM.from_pretrained("Baghdad99/saad-hausa-text-to-english-text")
11
 
12
+ # Load the Text-to-Speech model
13
+ tts_tokenizer = AutoTokenizer.from_pretrained("Baghdad99/english_voice_tts")
14
+ tts_model = AutoModelForTextToWaveform.from_pretrained("Baghdad99/english_voice_tts")
15
 
16
+ def translate_speech(speech):
17
+ # Transcribe the speech to text
18
+ inputs = asr_processor(speech, return_tensors="pt", padding=True)
19
+ logits = asr_model(inputs.input_values).logits
20
+ predicted_ids = torch.argmax(logits, dim=-1)
21
+ transcription = asr_processor.decode(predicted_ids[0])
22
 
23
+ # Translate the text
24
+ translated = translation_model.generate(**translation_tokenizer(transcription, return_tensors="pt", padding=True))
25
+ translated_text = [translation_tokenizer.decode(t, skip_special_tokens=True) for t in translated]
26
 
27
+ # Convert the translated text to speech
28
+ inputs = tts_tokenizer(translated_text, return_tensors='pt')
29
+ audio = tts_model.generate(inputs['input_ids'])
30
 
31
+ return audio
 
32
 
33
+ # Define the Gradio interface
34
+ iface = gr.Interface(fn=translate_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio")
35
+ iface.launch()
36