Spaces:
Sleeping
Sleeping
import gradio as gr | |
import requests | |
import numpy as np | |
from pydub import AudioSegment | |
import io | |
from IPython.display import Audio | |
# Define the Hugging Face Inference API URLs and headers | |
ASR_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-speech-recognition-hausa-audio-to-text" | |
TTS_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/english_voice_tts" | |
TRANSLATION_API_URL = "https://api-inference.huggingface.co/models/Baghdad99/saad-hausa-text-to-english-text" | |
headers = {"Authorization": "Bearer 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"} | |
# Define the function to query the Hugging Face Inference API | |
def query(api_url, payload=None, data=None): | |
if data is not None: | |
response = requests.post(api_url, headers=headers, data=data) | |
else: | |
response = requests.post(api_url, headers=headers, json=payload) | |
response_json = response.json() | |
if 'error' in response_json: | |
print(f"Error in query function: {response_json['error']}") | |
return None | |
return response_json | |
# Define the function to translate speech | |
def translate_speech(audio_file): | |
print(f"Type of audio: {type(audio_file)}, Value of audio: {audio_file}") # Debug line | |
# Use the ASR pipeline to transcribe the audio | |
data = audio_file.read() | |
output = query(ASR_API_URL, data=data) | |
print(f"Output: {output}") # Debug line | |
# Check if output is not None | |
if output is not None: | |
# Check if 'error' key exists in the output | |
if 'error' in output: | |
print(f"Error: {output['error']}") | |
return | |
# Check if 'text' key exists in the output | |
if 'text' in output: | |
transcription = output["text"] | |
else: | |
print("Key 'text' does not exist in the output.") | |
return | |
else: | |
print("Output is None.") | |
return | |
# Use the translation pipeline to translate the transcription | |
translated_text = query(TRANSLATION_API_URL, {"inputs": transcription}) | |
# Use the TTS pipeline to synthesize the translated text | |
response = requests.post(TTS_API_URL, headers=headers, json={"inputs": translated_text}) | |
audio_bytes = response.content | |
# Display the audio output | |
return Audio(audio_bytes) | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=translate_speech, | |
inputs=gr.inputs.File(type="file"), # Change this line | |
outputs=gr.outputs.Audio(type="numpy"), | |
title="Hausa to English Translation", | |
description="Realtime demo for Hausa to English translation using speech recognition and text-to-speech synthesis." | |
) | |
iface.launch() | |