Spaces:
Runtime error
Runtime error
import streamlit as st | |
import torch | |
from transformers import Owlv2Processor, Owlv2ForObjectDetection | |
from PIL import Image, ImageDraw, ImageFont | |
import numpy as np | |
import random | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble").to(device) | |
processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble") | |
st.title("Zero-Shot Object Detection with OWLv2") | |
uploaded_image = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"]) | |
text_queries = st.text_input("Enter text queries (comma-separated):") | |
score_threshold = st.slider("Score Threshold", min_value=0.0, max_value=1.0, value=0.1, step=0.01) | |
def query_image(img, text_queries, score_threshold): | |
try: | |
img = Image.open(img).convert("RGB") | |
img_np = np.array(img) | |
text_queries = text_queries.split(",") | |
size = max(img_np.shape[:2]) | |
target_sizes = torch.Tensor([[size, size]]) | |
inputs = processor(text=text_queries, images=img_np, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
outputs.logits = outputs.logits.cpu() | |
outputs.pred_boxes = outputs.pred_boxes.cpu() | |
results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_sizes) | |
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] | |
result_labels = [] | |
for box, score, label in zip(boxes, scores, labels): | |
box = [int(i) for i in box.tolist()] | |
if score < score_threshold: | |
continue | |
result_labels.append((box, text_queries[label.item()])) | |
return img, result_labels | |
except Exception as e: | |
st.error(f"Error performing object detection: {e}") | |
if uploaded_image is not None: | |
annotated_image, detected_objects = query_image(uploaded_image, text_queries, score_threshold) | |
if annotated_image: | |
draw = ImageDraw.Draw(annotated_image) | |
font = ImageFont.load_default() | |
for box, label in detected_objects: | |
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) | |
draw.rectangle(box, outline=color, width=3) | |
draw.text((box[0], box[1]), label, fill="black", font=font) | |
st.image(annotated_image, caption="Annotated Image", use_column_width=True) | |