Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Create a zero-shot classification pipeline
|
5 |
+
classifier = pipeline("zero-shot-classification")
|
6 |
+
|
7 |
+
|
8 |
+
def classify_text(text, additional_labels):
|
9 |
+
# Default labels
|
10 |
+
labels = ["Education", "Business", "Sports", "Manufacturing"]
|
11 |
+
|
12 |
+
# Add custom labels if provided
|
13 |
+
if additional_labels:
|
14 |
+
custom_labels = additional_labels.split(',')
|
15 |
+
labels.extend(custom_labels)
|
16 |
+
|
17 |
+
# Perform classification
|
18 |
+
result = classifier(text, candidate_labels=labels)
|
19 |
+
|
20 |
+
# Formatting the output
|
21 |
+
output = []
|
22 |
+
for label, score in zip(result["labels"], result["scores"]):
|
23 |
+
output.append(f"Label: {label}, Score: {round(score, 4)}")
|
24 |
+
return "\n".join(output)
|
25 |
+
|
26 |
+
|
27 |
+
# Create a Gradio interface
|
28 |
+
interface = gr.Interface(
|
29 |
+
fn=classify_text,
|
30 |
+
inputs=["text", "text"],
|
31 |
+
outputs="text",
|
32 |
+
title="Text Classification",
|
33 |
+
description="Enter a text to classify into categories: Education, Business, Sports, Manufacturing. Optionally, add more categories separated by commas."
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the interface
|
37 |
+
interface.launch()
|