|
import numpy as np |
|
import os |
|
import re |
|
import datetime |
|
import arxiv |
|
import openai, tenacity |
|
import base64, requests |
|
import argparse |
|
import configparser |
|
import fitz, io, os |
|
from PIL import Image |
|
import gradio |
|
import markdown |
|
import json |
|
import tiktoken |
|
import concurrent.futures |
|
from optimizeOpenAI import chatPaper |
|
|
|
def parse_text(text): |
|
lines = text.split("\n") |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
items = line.split('`') |
|
if items[-1]: |
|
lines[i] = f'<pre><code class="{items[-1]}">' |
|
else: |
|
lines[i] = f'</code></pre>' |
|
else: |
|
if i > 0: |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
lines[i] = '<br/>' + line.replace(" ", " ") |
|
return "".join(lines) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
valid_api_keys = [] |
|
|
|
|
|
def api_key_check(api_key): |
|
try: |
|
chat = chatPaper([api_key]) |
|
if chat.check_api_available(): |
|
return api_key |
|
else: |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
def valid_apikey(api_keys): |
|
api_keys = api_keys.replace(' ', '') |
|
api_key_list = api_keys.split(',') |
|
print(api_key_list) |
|
global valid_api_keys |
|
with concurrent.futures.ThreadPoolExecutor() as executor: |
|
future_results = { |
|
executor.submit(api_key_check, api_key): api_key |
|
for api_key in api_key_list |
|
} |
|
for future in concurrent.futures.as_completed(future_results): |
|
result = future.result() |
|
if result: |
|
valid_api_keys.append(result) |
|
if len(valid_api_keys) > 0: |
|
return "有效的api-key一共有{}个,分别是:{}, 现在可以提交你的paper".format( |
|
len(valid_api_keys), valid_api_keys) |
|
return "无效的api-key" |
|
|
|
|
|
class Paper: |
|
|
|
def __init__(self, path, title='', url='', abs='', authers=[], sl=[]): |
|
|
|
self.url = url |
|
self.path = path |
|
self.sl = sl |
|
self.section_names = [] |
|
self.section_texts = {} |
|
self.abs = abs |
|
self.title_page = 0 |
|
if title == '': |
|
self.pdf = fitz.open(self.path) |
|
self.title = self.get_title() |
|
self.parse_pdf() |
|
else: |
|
self.title = title |
|
self.authers = authers |
|
self.roman_num = [ |
|
"I", "II", 'III', "IV", "V", "VI", "VII", "VIII", "IIX", "IX", "X" |
|
] |
|
self.digit_num = [str(d + 1) for d in range(10)] |
|
self.first_image = '' |
|
|
|
def parse_pdf(self): |
|
self.pdf = fitz.open(self.path) |
|
self.text_list = [page.get_text() for page in self.pdf] |
|
self.all_text = ' '.join(self.text_list) |
|
self.section_page_dict = self._get_all_page_index() |
|
print("section_page_dict", self.section_page_dict) |
|
self.section_text_dict = self._get_all_page() |
|
self.section_text_dict.update({"title": self.title}) |
|
self.section_text_dict.update({"paper_info": self.get_paper_info()}) |
|
self.pdf.close() |
|
|
|
def get_paper_info(self): |
|
first_page_text = self.pdf[self.title_page].get_text() |
|
if "Abstract" in self.section_text_dict.keys(): |
|
abstract_text = self.section_text_dict['Abstract'] |
|
else: |
|
abstract_text = self.abs |
|
introduction_text = self.section_text_dict['Introduction'] |
|
first_page_text = first_page_text.replace(abstract_text, "").replace( |
|
introduction_text, "") |
|
return first_page_text |
|
|
|
def get_image_path(self, image_path=''): |
|
""" |
|
将PDF中的第一张图保存到image.png里面,存到本地目录,返回文件名称,供gitee读取 |
|
:param filename: 图片所在路径,"C:\\Users\\Administrator\\Desktop\\nwd.pdf" |
|
:param image_path: 图片提取后的保存路径 |
|
:return: |
|
""" |
|
|
|
max_size = 0 |
|
image_list = [] |
|
with fitz.Document(self.path) as my_pdf_file: |
|
|
|
for page_number in range(1, len(my_pdf_file) + 1): |
|
|
|
page = my_pdf_file[page_number - 1] |
|
|
|
images = page.get_images() |
|
|
|
for image_number, image in enumerate(page.get_images(), |
|
start=1): |
|
|
|
xref_value = image[0] |
|
|
|
base_image = my_pdf_file.extract_image(xref_value) |
|
|
|
image_bytes = base_image["image"] |
|
|
|
ext = base_image["ext"] |
|
|
|
image = Image.open(io.BytesIO(image_bytes)) |
|
image_size = image.size[0] * image.size[1] |
|
if image_size > max_size: |
|
max_size = image_size |
|
image_list.append(image) |
|
for image in image_list: |
|
image_size = image.size[0] * image.size[1] |
|
if image_size == max_size: |
|
image_name = f"image.{ext}" |
|
im_path = os.path.join(image_path, image_name) |
|
print("im_path:", im_path) |
|
|
|
max_pix = 480 |
|
origin_min_pix = min(image.size[0], image.size[1]) |
|
|
|
if image.size[0] > image.size[1]: |
|
min_pix = int(image.size[1] * (max_pix / image.size[0])) |
|
newsize = (max_pix, min_pix) |
|
else: |
|
min_pix = int(image.size[0] * (max_pix / image.size[1])) |
|
newsize = (min_pix, max_pix) |
|
image = image.resize(newsize) |
|
|
|
image.save(open(im_path, "wb")) |
|
return im_path, ext |
|
return None, None |
|
|
|
|
|
def get_chapter_names(self, ): |
|
|
|
doc = fitz.open(self.path) |
|
text_list = [page.get_text() for page in doc] |
|
all_text = '' |
|
for text in text_list: |
|
all_text += text |
|
|
|
chapter_names = [] |
|
for line in all_text.split('\n'): |
|
line_list = line.split(' ') |
|
if '.' in line: |
|
point_split_list = line.split('.') |
|
space_split_list = line.split(' ') |
|
if 1 < len(space_split_list) < 5: |
|
if 1 < len(point_split_list) < 5 and ( |
|
point_split_list[0] in self.roman_num |
|
or point_split_list[0] in self.digit_num): |
|
print("line:", line) |
|
chapter_names.append(line) |
|
|
|
return chapter_names |
|
|
|
def get_title(self): |
|
doc = self.pdf |
|
max_font_size = 0 |
|
max_string = "" |
|
max_font_sizes = [0] |
|
for page_index, page in enumerate(doc): |
|
text = page.get_text("dict") |
|
blocks = text["blocks"] |
|
for block in blocks: |
|
if block["type"] == 0 and len(block['lines']): |
|
if len(block["lines"][0]["spans"]): |
|
font_size = block["lines"][0]["spans"][0][ |
|
"size"] |
|
max_font_sizes.append(font_size) |
|
if font_size > max_font_size: |
|
max_font_size = font_size |
|
max_string = block["lines"][0]["spans"][0][ |
|
"text"] |
|
max_font_sizes.sort() |
|
print("max_font_sizes", max_font_sizes[-10:]) |
|
cur_title = '' |
|
for page_index, page in enumerate(doc): |
|
text = page.get_text("dict") |
|
blocks = text["blocks"] |
|
for block in blocks: |
|
if block["type"] == 0 and len(block['lines']): |
|
if len(block["lines"][0]["spans"]): |
|
cur_string = block["lines"][0]["spans"][0][ |
|
"text"] |
|
font_flags = block["lines"][0]["spans"][0][ |
|
"flags"] |
|
font_size = block["lines"][0]["spans"][0][ |
|
"size"] |
|
|
|
if abs(font_size - max_font_sizes[-1]) < 0.3 or abs( |
|
font_size - max_font_sizes[-2]) < 0.3: |
|
|
|
if len(cur_string |
|
) > 4 and "arXiv" not in cur_string: |
|
|
|
if cur_title == '': |
|
cur_title += cur_string |
|
else: |
|
cur_title += ' ' + cur_string |
|
self.title_page = page_index |
|
|
|
title = cur_title.replace('\n', ' ') |
|
return title |
|
|
|
def _get_all_page_index(self): |
|
|
|
section_list = self.sl |
|
|
|
section_page_dict = {} |
|
|
|
for page_index, page in enumerate(self.pdf): |
|
|
|
cur_text = page.get_text() |
|
|
|
for section_name in section_list: |
|
|
|
section_name_upper = section_name.upper() |
|
|
|
if "Abstract" == section_name and section_name in cur_text: |
|
|
|
section_page_dict[section_name] = page_index |
|
|
|
else: |
|
if section_name + '\n' in cur_text: |
|
section_page_dict[section_name] = page_index |
|
elif section_name_upper + '\n' in cur_text: |
|
section_page_dict[section_name] = page_index |
|
|
|
return section_page_dict |
|
|
|
def _get_all_page(self): |
|
""" |
|
获取PDF文件中每个页面的文本信息,并将文本信息按照章节组织成字典返回。 |
|
Returns: |
|
section_dict (dict): 每个章节的文本信息字典,key为章节名,value为章节文本。 |
|
""" |
|
text = '' |
|
text_list = [] |
|
section_dict = {} |
|
|
|
|
|
text_list = [page.get_text() for page in self.pdf] |
|
for sec_index, sec_name in enumerate(self.section_page_dict): |
|
print(sec_index, sec_name, self.section_page_dict[sec_name]) |
|
if sec_index <= 0 and self.abs: |
|
continue |
|
else: |
|
|
|
start_page = self.section_page_dict[sec_name] |
|
if sec_index < len(list(self.section_page_dict.keys())) - 1: |
|
end_page = self.section_page_dict[list( |
|
self.section_page_dict.keys())[sec_index + 1]] |
|
else: |
|
end_page = len(text_list) |
|
print("start_page, end_page:", start_page, end_page) |
|
cur_sec_text = '' |
|
if end_page - start_page == 0: |
|
if sec_index < len(list( |
|
self.section_page_dict.keys())) - 1: |
|
next_sec = list( |
|
self.section_page_dict.keys())[sec_index + 1] |
|
if text_list[start_page].find(sec_name) == -1: |
|
start_i = text_list[start_page].find( |
|
sec_name.upper()) |
|
else: |
|
start_i = text_list[start_page].find(sec_name) |
|
if text_list[start_page].find(next_sec) == -1: |
|
end_i = text_list[start_page].find( |
|
next_sec.upper()) |
|
else: |
|
end_i = text_list[start_page].find(next_sec) |
|
cur_sec_text += text_list[start_page][start_i:end_i] |
|
else: |
|
for page_i in range(start_page, end_page): |
|
|
|
if page_i == start_page: |
|
if text_list[start_page].find(sec_name) == -1: |
|
start_i = text_list[start_page].find( |
|
sec_name.upper()) |
|
else: |
|
start_i = text_list[start_page].find(sec_name) |
|
cur_sec_text += text_list[page_i][start_i:] |
|
elif page_i < end_page: |
|
cur_sec_text += text_list[page_i] |
|
elif page_i == end_page: |
|
if sec_index < len( |
|
list(self.section_page_dict.keys())) - 1: |
|
next_sec = list( |
|
self.section_page_dict.keys())[sec_index + |
|
1] |
|
if text_list[start_page].find(next_sec) == -1: |
|
end_i = text_list[start_page].find( |
|
next_sec.upper()) |
|
else: |
|
end_i = text_list[start_page].find( |
|
next_sec) |
|
cur_sec_text += text_list[page_i][:end_i] |
|
section_dict[sec_name] = cur_sec_text.replace('-\n', |
|
'').replace( |
|
'\n', ' ') |
|
return section_dict |
|
|
|
|
|
|
|
class Reader: |
|
|
|
def __init__(self, |
|
key_word='', |
|
query='', |
|
filter_keys='', |
|
root_path='./', |
|
gitee_key='', |
|
sort=arxiv.SortCriterion.SubmittedDate, |
|
user_name='defualt', |
|
language='cn', |
|
api_keys: list = [], |
|
model_name="gpt-3.5-turbo", |
|
p=1.0, |
|
temperature=1.0): |
|
self.api_keys = api_keys |
|
self.chatPaper = chatPaper(api_keys=self.api_keys, |
|
apiTimeInterval=10, |
|
temperature=temperature, |
|
top_p=p, |
|
model_name=model_name) |
|
self.user_name = user_name |
|
self.key_word = key_word |
|
self.query = query |
|
self.sort = sort |
|
self.language = language |
|
self.filter_keys = filter_keys |
|
self.root_path = root_path |
|
self.file_format = 'md' |
|
self.save_image = False |
|
if self.save_image: |
|
self.gitee_key = self.config.get('Gitee', 'api') |
|
else: |
|
self.gitee_key = '' |
|
self.max_token_num = 4096 |
|
self.encoding = tiktoken.get_encoding("gpt2") |
|
|
|
def get_arxiv(self, max_results=30): |
|
search = arxiv.Search( |
|
query=self.query, |
|
max_results=max_results, |
|
sort_by=self.sort, |
|
sort_order=arxiv.SortOrder.Descending, |
|
) |
|
return search |
|
|
|
def filter_arxiv(self, max_results=30): |
|
search = self.get_arxiv(max_results=max_results) |
|
print("all search:") |
|
for index, result in enumerate(search.results()): |
|
print(index, result.title, result.updated) |
|
|
|
filter_results = [] |
|
filter_keys = self.filter_keys |
|
|
|
print("filter_keys:", self.filter_keys) |
|
|
|
for index, result in enumerate(search.results()): |
|
abs_text = result.summary.replace('-\n', '-').replace('\n', ' ') |
|
meet_num = 0 |
|
for f_key in filter_keys.split(" "): |
|
if f_key.lower() in abs_text.lower(): |
|
meet_num += 1 |
|
if meet_num == len(filter_keys.split(" ")): |
|
filter_results.append(result) |
|
|
|
print("filter_results:", len(filter_results)) |
|
print("filter_papers:") |
|
for index, result in enumerate(filter_results): |
|
print(index, result.title, result.updated) |
|
return filter_results |
|
|
|
def validateTitle(self, title): |
|
|
|
rstr = r"[\/\\\:\*\?\"\<\>\|]" |
|
new_title = re.sub(rstr, "_", title) |
|
return new_title |
|
|
|
def download_pdf(self, filter_results): |
|
|
|
date_str = str(datetime.datetime.now())[:13].replace(' ', '-') |
|
key_word = str(self.key_word.replace(':', ' ')) |
|
path = self.root_path + 'pdf_files/' + self.query.replace( |
|
'au: ', '').replace('title: ', '').replace('ti: ', '').replace( |
|
':', ' ')[:25] + '-' + date_str |
|
try: |
|
os.makedirs(path) |
|
except: |
|
pass |
|
print("All_paper:", len(filter_results)) |
|
|
|
paper_list = [] |
|
for r_index, result in enumerate(filter_results): |
|
try: |
|
title_str = self.validateTitle(result.title) |
|
pdf_name = title_str + '.pdf' |
|
|
|
self.try_download_pdf(result, path, pdf_name) |
|
paper_path = os.path.join(path, pdf_name) |
|
print("paper_path:", paper_path) |
|
paper = Paper( |
|
path=paper_path, |
|
url=result.entry_id, |
|
title=result.title, |
|
abs=result.summary.replace('-\n', '-').replace('\n', ' '), |
|
authers=[str(aut) for aut in result.authors], |
|
) |
|
|
|
paper.parse_pdf() |
|
paper_list.append(paper) |
|
except Exception as e: |
|
print("download_error:", e) |
|
pass |
|
return paper_list |
|
|
|
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, |
|
max=10), |
|
stop=tenacity.stop_after_attempt(5), |
|
reraise=True) |
|
def try_download_pdf(self, result, path, pdf_name): |
|
result.download_pdf(path, filename=pdf_name) |
|
|
|
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, |
|
max=10), |
|
stop=tenacity.stop_after_attempt(5), |
|
reraise=True) |
|
def upload_gitee(self, image_path, image_name='', ext='png'): |
|
""" |
|
上传到码云 |
|
:return: |
|
""" |
|
with open(image_path, 'rb') as f: |
|
base64_data = base64.b64encode(f.read()) |
|
base64_content = base64_data.decode() |
|
|
|
date_str = str(datetime.datetime.now())[:19].replace(':', '-').replace( |
|
' ', '-') + '.' + ext |
|
path = image_name + '-' + date_str |
|
|
|
payload = { |
|
"access_token": self.gitee_key, |
|
"owner": self.config.get('Gitee', 'owner'), |
|
"repo": self.config.get('Gitee', 'repo'), |
|
"path": self.config.get('Gitee', 'path'), |
|
"content": base64_content, |
|
"message": "upload image" |
|
} |
|
|
|
url = f'https://gitee.com/api/v5/repos/' + self.config.get( |
|
'Gitee', 'owner') + '/' + self.config.get( |
|
'Gitee', 'repo') + '/contents/' + self.config.get( |
|
'Gitee', 'path') + '/' + path |
|
rep = requests.post(url, json=payload).json() |
|
print("rep:", rep) |
|
if 'content' in rep.keys(): |
|
image_url = rep['content']['download_url'] |
|
else: |
|
image_url = r"https://gitee.com/api/v5/repos/" + self.config.get( |
|
'Gitee', 'owner') + '/' + self.config.get( |
|
'Gitee', 'repo') + '/contents/' + self.config.get( |
|
'Gitee', 'path') + '/' + path |
|
|
|
return image_url |
|
|
|
|
|
def summary_with_chat(self, paper_list): |
|
htmls = [] |
|
utoken = 0 |
|
ctoken = 0 |
|
ttoken = 0 |
|
for paper_index, paper in enumerate(paper_list): |
|
|
|
text = '' |
|
text += 'Title:' + paper.title |
|
text += 'Url:' + paper.url |
|
text += 'Abstrat:' + paper.abs |
|
text += 'Paper_info:' + paper.section_text_dict['paper_info'] |
|
|
|
text += list(paper.section_text_dict.values())[0] |
|
|
|
|
|
chat_summary_text, utoken1, ctoken1, ttoken1 = self.chat_summary( |
|
text=text) |
|
htmls.append(chat_summary_text) |
|
|
|
|
|
method_key = '' |
|
for parse_key in paper.section_text_dict.keys(): |
|
if 'method' in parse_key.lower( |
|
) or 'approach' in parse_key.lower(): |
|
method_key = parse_key |
|
break |
|
|
|
if method_key != '': |
|
text = '' |
|
method_text = '' |
|
summary_text = '' |
|
summary_text += "<summary>" + chat_summary_text |
|
|
|
method_text += paper.section_text_dict[method_key] |
|
text = summary_text + "\n<Methods>:\n" + method_text |
|
chat_method_text, utoken2, ctoken2, ttoken2 = self.chat_method( |
|
text=text) |
|
else: |
|
chat_method_text = '' |
|
htmls.append(chat_method_text) |
|
htmls.append("\n") |
|
|
|
|
|
conclusion_key = '' |
|
for parse_key in paper.section_text_dict.keys(): |
|
if 'conclu' in parse_key.lower(): |
|
conclusion_key = parse_key |
|
break |
|
|
|
text = '' |
|
conclusion_text = '' |
|
summary_text = '' |
|
summary_text += "<summary>" + chat_summary_text + "\n <Method summary>:\n" + chat_method_text |
|
if conclusion_key != '': |
|
|
|
conclusion_text += paper.section_text_dict[conclusion_key] |
|
text = summary_text + "\n <Conclusion>:\n" + conclusion_text |
|
else: |
|
text = summary_text |
|
chat_conclusion_text, utoken3, ctoken3, ttoken3 = self.chat_conclusion( |
|
text=text) |
|
htmls.append(chat_conclusion_text) |
|
htmls.append("\n") |
|
|
|
utoken = utoken + utoken1 + utoken2 + utoken3 |
|
ctoken = ctoken + ctoken1 + ctoken2 + ctoken3 |
|
ttoken = ttoken + ttoken1 + ttoken2 + ttoken3 |
|
cost = (ttoken / 1000) * 0.002 |
|
pos_count = { |
|
"usage_token_used": str(utoken), |
|
"completion_token_used": str(ctoken), |
|
"total_token_used": str(ttoken), |
|
"cost": str(cost), |
|
} |
|
md_text = "\n".join(htmls) |
|
|
|
|
|
|
|
|
|
return markdown.markdown(md_text), pos_count |
|
|
|
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, |
|
max=10), |
|
stop=tenacity.stop_after_attempt(5), |
|
reraise=True) |
|
def chat_conclusion(self, text): |
|
conclusion_prompt_token = 650 |
|
text_token = len(self.encoding.encode(text)) |
|
clip_text_index = int( |
|
len(text) * (self.max_token_num - conclusion_prompt_token) / |
|
text_token) |
|
clip_text = text[:clip_text_index] |
|
self.chatPaper.reset( |
|
convo_id="chatConclusion", |
|
system_prompt="You are a reviewer in the field of [" + |
|
self.key_word + "] and you need to critically review this article") |
|
self.chatPaper.add_to_conversation( |
|
convo_id="chatConclusion", |
|
role="assistant", |
|
message= |
|
"This is the <summary> and <conclusion> part of an English literature, where <summary> you have already summarized, but <conclusion> part, I need your help to summarize the following questions:" |
|
+ clip_text) |
|
content = """ |
|
8. Make the following summary.Be sure to use Chinese answers (proper nouns need to be marked in English). |
|
- (1):What is the significance of this piece of work? |
|
- (2):Summarize the strengths and weaknesses of this article in three dimensions: innovation point, performance, and workload. |
|
....... |
|
Follow the format of the output later: |
|
8. Conclusion: \n\n |
|
- (1):xxx;\n |
|
- (2):Innovation point: xxx; Performance: xxx; Workload: xxx;\n |
|
|
|
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. |
|
""" |
|
result = self.chatPaper.ask( |
|
prompt=content, |
|
role="user", |
|
convo_id="chatConclusion", |
|
) |
|
print(result) |
|
return result[0], result[1], result[2], result[3] |
|
|
|
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, |
|
max=10), |
|
stop=tenacity.stop_after_attempt(5), |
|
reraise=True) |
|
def chat_method(self, text): |
|
method_prompt_token = 650 |
|
text_token = len(self.encoding.encode(text)) |
|
clip_text_index = int( |
|
len(text) * (self.max_token_num - method_prompt_token) / |
|
text_token) |
|
clip_text = text[:clip_text_index] |
|
self.chatPaper.reset( |
|
convo_id="chatMethod", |
|
system_prompt="You are a researcher in the field of [" + |
|
self.key_word + |
|
"] who is good at summarizing papers using concise statements" |
|
) |
|
self.chatPaper.add_to_conversation( |
|
convo_id="chatMethod", |
|
role="assistant", |
|
message=str( |
|
"This is the <summary> and <Method> part of an English document, where <summary> you have summarized, but the <Methods> part, I need your help to read and summarize the following questions." |
|
+ clip_text)) |
|
content = """ |
|
7. Describe in detail the methodological idea of this article. Be sure to use Chinese answers (proper nouns need to be marked in English). For example, its steps are. |
|
- (1):... |
|
- (2):... |
|
- (3):... |
|
- ....... |
|
Follow the format of the output that follows: |
|
7. Methods: \n\n |
|
- (1):xxx;\n |
|
- (2):xxx;\n |
|
- (3):xxx;\n |
|
....... \n\n |
|
|
|
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not repeat the content of the previous <summary>, the value of the use of the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed, ....... means fill in according to the actual requirements, if not, you can not write. |
|
""" |
|
result = self.chatPaper.ask( |
|
prompt=content, |
|
role="user", |
|
convo_id="chatMethod", |
|
) |
|
print(result) |
|
return result[0], result[1], result[2], result[3] |
|
|
|
@tenacity.retry(wait=tenacity.wait_exponential(multiplier=1, min=4, |
|
max=10), |
|
stop=tenacity.stop_after_attempt(5), |
|
reraise=True) |
|
def chat_summary(self, text): |
|
summary_prompt_token = 1000 |
|
text_token = len(self.encoding.encode(text)) |
|
clip_text_index = int( |
|
len(text) * (self.max_token_num - summary_prompt_token) / |
|
text_token) |
|
clip_text = text[:clip_text_index] |
|
self.chatPaper.reset( |
|
convo_id="chatSummary", |
|
system_prompt="You are a researcher in the field of [" + |
|
self.key_word + |
|
"] who is good at summarizing papers using concise statements") |
|
self.chatPaper.add_to_conversation( |
|
convo_id="chatSummary", |
|
role="assistant", |
|
message=str( |
|
"This is the title, author, link, abstract and introduction of an English document. I need your help to read and summarize the following questions: " |
|
+ clip_text)) |
|
content = """ |
|
1. Mark the title of the paper (with Chinese translation) |
|
2. list all the authors' names (use English) |
|
3. mark the first author's affiliation (output Chinese translation only) |
|
4. mark the keywords of this article (use English) |
|
5. link to the paper, Github code link (if available, fill in Github:None if not) |
|
6. summarize according to the following four points.Be sure to use Chinese answers (proper nouns need to be marked in English) |
|
- (1):What is the research background of this article? |
|
- (2):What are the past methods? What are the problems with them? Is the approach well motivated? |
|
- (3):What is the research methodology proposed in this paper? |
|
- (4):On what task and what performance is achieved by the methods in this paper? Can the performance support their goals? |
|
Follow the format of the output that follows: |
|
1. Title: xxx\n\n |
|
2. Authors: xxx\n\n |
|
3. Affiliation: xxx\n\n |
|
4. Keywords: xxx\n\n |
|
5. Urls: xxx or xxx , xxx \n\n |
|
6. Summary: \n\n |
|
- (1):xxx;\n |
|
- (2):xxx;\n |
|
- (3):xxx;\n |
|
- (4):xxx.\n\n |
|
|
|
Be sure to use Chinese answers (proper nouns need to be marked in English), statements as concise and academic as possible, do not have too much repetitive information, numerical values using the original numbers, be sure to strictly follow the format, the corresponding content output to xxx, in accordance with \n line feed. |
|
""" |
|
result = self.chatPaper.ask( |
|
prompt=content, |
|
role="user", |
|
convo_id="chatSummary", |
|
) |
|
print(result) |
|
return result[0], result[1], result[2], result[3] |
|
|
|
def export_to_markdown(self, text, file_name, mode='w'): |
|
|
|
|
|
|
|
with open(file_name, mode, encoding="utf-8") as f: |
|
|
|
f.write(text) |
|
|
|
|
|
def show_info(self): |
|
print(f"Key word: {self.key_word}") |
|
print(f"Query: {self.query}") |
|
print(f"Sort: {self.sort}") |
|
|
|
|
|
def upload_pdf(api_keys, text, model_name, p, temperature, file): |
|
|
|
api_key_list = None |
|
if api_keys: |
|
api_key_list = api_keys.split(',') |
|
elif not api_keys and valid_api_keys != []: |
|
api_key_list = valid_api_keys |
|
if not text or not file or not api_key_list: |
|
return "两个输入都不能为空,请输入字符并上传 PDF 文件!" |
|
|
|
|
|
|
|
|
|
else: |
|
section_list = text.split(',') |
|
paper_list = [Paper(path=file, sl=section_list)] |
|
|
|
print(api_key_list) |
|
reader = Reader(api_keys=api_key_list, |
|
model_name=model_name, |
|
p=p, |
|
temperature=temperature) |
|
sum_info, cost = reader.summary_with_chat( |
|
paper_list=paper_list) |
|
return cost, sum_info |
|
|
|
|
|
api_title = "api-key可用验证" |
|
api_description = '''<div align='left'> |
|
|
|
<img src='https://visitor-badge.laobi.icu/badge?page_id=https://huggingface.co/spaces/wangrongsheng/ChatPaper'> |
|
|
|
<img align='right' src='https://i.328888.xyz/2023/03/12/vH9dU.png' width="150"> |
|
|
|
使用卡顿?请Fork到自己的Space,轻松使用:<a href="https://huggingface.co/spaces/wangrongsheng/ChatPaper?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
|
|
💥💥💥<strong>面向全球,服务万千科研人的ChatPaper在线版正式上线:<a href="https://chatpaper.org/">https://chatpaper.org/</a> </strong>💥💥💥 |
|
|
|
Use ChatGPT to summary the papers.Star our Github [🌟ChatPaper](https://github.com/kaixindelele/ChatPaper) . |
|
|
|
💗如果您觉得我们的项目对您有帮助,还请您给我们一些鼓励!💗 |
|
|
|
🔴请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛! |
|
|
|
使用卡顿?请点击右上角<strong>Duplicate this Space</strong> 项目! |
|
|
|
</div> |
|
''' |
|
|
|
api_input = [ |
|
gradio.inputs.Textbox(label="请输入你的API-key(必填, 多个API-key请用英文逗号隔开)", |
|
default="", |
|
type='password') |
|
] |
|
api_gui = gradio.Interface(fn=valid_apikey, |
|
inputs=api_input, |
|
outputs="text", |
|
title=api_title, |
|
description=api_description) |
|
|
|
|
|
title = "ChatPaper" |
|
|
|
description = '''<div align='left'> |
|
|
|
<img src='https://visitor-badge.laobi.icu/badge?page_id=https://huggingface.co/spaces/wangrongsheng/ChatPaper'> |
|
|
|
<img align='right' src='https://i.328888.xyz/2023/03/12/vH9dU.png' width="150"> |
|
|
|
使用卡顿?请Fork到自己的Space,轻松使用:<a href="https://huggingface.co/spaces/wangrongsheng/ChatPaper?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> |
|
|
|
💥💥💥<strong>面向全球,服务万千科研人的ChatPaper在线版正式上线:<a href="https://chatpaper.org/">https://chatpaper.org/</a> </strong>💥💥💥 |
|
|
|
Use ChatGPT to summary the papers.Star our Github [🌟ChatPaper](https://github.com/kaixindelele/ChatPaper) . |
|
|
|
💗如果您觉得我们的项目对您有帮助,还请您给我们一些鼓励!💗 |
|
|
|
🔴请注意:千万不要用于严肃的学术场景,只能用于论文阅读前的初筛! |
|
|
|
使用卡顿?请点击右上角<strong>Duplicate this Space</strong> 项目! |
|
|
|
</div> |
|
''' |
|
|
|
ip = [ |
|
gradio.inputs.Textbox(label="请输入你的API-key(必填, 多个API-key请用英文逗号隔开),不需要空格", |
|
default="", |
|
type='password'), |
|
gradio.inputs.Textbox( |
|
label="请输入论文大标题索引(用英文逗号隔开,必填)", |
|
default= |
|
"'Abstract,Introduction,Related Work,Background,Preliminary,Problem Formulation,Methods,Methodology,Method,Approach,Approaches,Materials and Methods,Experiment Settings,Experiment,Experimental Results,Evaluation,Experiments,Results,Findings,Data Analysis,Discussion,Results and Discussion,Conclusion,References'" |
|
), |
|
gradio.inputs.Radio(choices=["gpt-3.5-turbo", "gpt-3.5-turbo-0301"], |
|
default="gpt-3.5-turbo", |
|
label="Select model"), |
|
gradio.inputs.Slider(minimum=-0, |
|
maximum=1.0, |
|
default=1.0, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)"), |
|
gradio.inputs.Slider(minimum=-0, |
|
maximum=5.0, |
|
default=0.5, |
|
step=0.5, |
|
label="Temperature"), |
|
gradio.inputs.File(label="请上传论文PDF(必填)") |
|
] |
|
|
|
chatpaper_gui = gradio.Interface(fn=upload_pdf, |
|
inputs=ip, |
|
outputs=["json", "html"], |
|
title=title, |
|
description=description) |
|
|
|
|
|
gui = gradio.TabbedInterface(interface_list=[api_gui, chatpaper_gui], |
|
tab_names=["API-key", "ChatPaper"]) |
|
gui.launch(quiet=True, show_api=False) |
|
|