Phantom / utils /utils.py
BK-Lee's picture
v1
dd4cd4b
import gc
import math
import torch
from config import *
from PIL import Image
import torch.nn as nn
import torch.nn.functional as F
from torchvision.transforms.functional import to_pil_image
from torchvision.transforms.functional import pil_to_tensor
output_filtering = lambda x, model: x.split(model.prompt_rule["test_start"])[-1].split(model.prompt_rule["test_end"])[0].strip()
def memory_optimization():
# memory deallocation
gc.collect()
# removing cache
torch.cuda.empty_cache()
def freeze_model(model):
for param in model.parameters():
param.requires_grad=False
def find_special_token(string, special_token):
start = 0
while True:
start = string.find(special_token, start)
if start == -1: return
yield start
start += len(special_token) # use start += 1 to find overlapping matches
def add_bundle_tokens(input_string, special_token, num):
# number of special tokens in input_string
num_special_tokens = len(list(find_special_token(input_string, special_token)))
# No special token -> return the raw
if not num_special_tokens:
return input_string
result = ""
index = 0
while index < len(input_string):
if input_string[index:index + len(special_token)] == special_token:
result += special_token * num
index += len(special_token)
else:
result += input_string[index]
index += 1
assert len(list(find_special_token(result, special_token))) == num_special_tokens * num
return result
def make_instruction_and_label(question, answer, tokenizer, device, prompt_rule, config):
qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
prompt_rule["assistant_start"],
split=prompt_rule["split"])
# Only QA Prompt Length
length = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].shape[0]
# Concat QA Prompt + Answer Length + stop token
qa_prompt = qa_prompt + answer + prompt_rule["assistant_end"]
# label
label = tokenizer(qa_prompt, return_tensors='pt', add_special_tokens=False).input_ids[0].to(device)
# phantom_position
phantom_position = torch.zeros_like(label)
phantom_position[0] = 1
# add ignore index to label
label[:length] = config.ignore_index
return qa_prompt, label, phantom_position
def make_instruction(question, dataset, prompt_rule):
if dataset != "mathverse" and dataset != "hallusionbench" and dataset == "demo":
question = "<image>" + question
if dataset in ["sqa", "mmbench", "mmbench_cn", "mmbench_dev", "mmbench_cn_dev", "seed", "seed-2-plus", "qbench", "ai2d", "mmstar", "cvbench", "blink"]:
question = question + "\nAnswer with the option's letter from the given choices directly."
elif dataset in ["pope", "chartqa"]:
question = question + "\nAnswer the question using a single word or phrase."
elif dataset in ["hallusionbench"]:
if "Please answer yes or no." not in question:
question = question + "\nPlease answer yes or no."
qa_prompt = make_human_string(prompt_rule["user_start"]+question+prompt_rule["user_end"],
prompt_rule["assistant_start"],
split=prompt_rule["split"])
return qa_prompt
def make_human_string(*args, split):
out = ''
for i, arg in enumerate(args):
out += arg
if i != len(args)-1:
out += split
return out
def get_max_new_tokens(data_name):
if data_name.lower() in ["mme", "pope", "sqa", "mmbench", "mmbench_cn", \
"mmbench_dev","mmbench_cn_dev", "seed", "seed-2-plus", \
"qbench", "ai2d", "mmstar", "chartqa", "hallusionbench", \
"cvbench", "blink"]:
return 5
elif data_name.lower() in ["llava", "llava_wilder", "mm-vet", "mm-vet-v2"]:
return 1024
elif data_name.lower() in ["mathvista", "mathverse", "visualwebbench"]:
return 512
else:
raise Exception("Check Data Name!")
class ScaledDotProductAttention(nn.Module):
def forward(self, query, key, value):
dk = query.size()[-1]
scores = query.matmul(key.transpose(-2, -1)) / math.sqrt(dk)
attention = F.softmax(scores, dim=-1)
return attention.matmul(value)
class XAttention(nn.Module):
def __init__(self,
in_features,
activation=F.gelu,
eta=1e-4):
"""XAttention attention.
:param in_features: Size of each input sample.
:param activation: The activation after each linear transformation.
"""
super(XAttention, self).__init__()
self.in_features = in_features
self.activation = activation
self.linear_q = nn.Linear(in_features, in_features, False)
self.linear_k = nn.Linear(in_features, in_features, False)
self.linear_v = nn.Linear(in_features, in_features, False)
self.linear_o = nn.Linear(in_features, in_features, False)
self.eta = eta
def forward(self, q, k, v, is_residual=False):
_q, _k, _v = self.linear_q(q), self.linear_k(k), self.linear_v(v)
if self.activation is not None:
_q = self.activation(_q)
_k = self.activation(_k)
_v = self.activation(_v)
y = ScaledDotProductAttention()(_q, _k, _v)
y = self.linear_o(y)
if self.activation is not None: y = self.activation(y)
return q + self.eta*y if is_residual else self.eta*y
def pixel_shuffle(x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
int(c / (scale_factor * scale_factor)))
x = x.permute(0, 2, 1, 3).contiguous()
return x
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
dynamic_transform = build_transform(input_size=448)
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=True):
image = to_pil_image(image)
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def concat_images_horizontally_with_margin(image_tensors, margin=10):
images = [to_pil_image(xx) for xx in image_tensors]
max_height = max(image.height for image in images)
total_width = sum(image.width for image in images) + margin * (len(images) - 1)
# Create a new image with a black background
new_image = Image.new('RGB', (total_width, max_height), (0, 0, 0))
x_offset = 0
for image in images:
# Calculate padding to center the image vertically
y_offset = (max_height - image.height) // 2
new_image.paste(image, (x_offset, y_offset))
x_offset += image.width + margin # Add margin after each image except the last one
return pil_to_tensor(new_image)