Meteor / meteor /load_meteor.py
BK-Lee's picture
v1
8a25753
import torch
import warnings
from transformers import BitsAndBytesConfig
from .arch.modeling_meteor import MeteorForCausalLM
from .arch.tokenization_internlm2 import InternLM2Tokenizer
warnings.filterwarnings(action='ignore')
def load_meteor(link, bits):
# huggingface model configuration
huggingface_config = {}
# Bit quantization
if bits in [4, 8]:
huggingface_config.update(dict(
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2",
quantization_config=BitsAndBytesConfig(
load_in_4bit=bits == 4,
load_in_8bit=bits == 8,
llm_int8_skip_modules=["vit", "vision_proj", "output", "ffn"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
))
else:
huggingface_config.update(dict(
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="flash_attention_2",
))
# loading backbone model
meteor = MeteorForCausalLM.from_pretrained(link, **huggingface_config)
# loading meteor tokenizer
# adding <image> and <tor> special token
tok_meteor = InternLM2Tokenizer.from_pretrained(link, padding_side='left')
tok_meteor.add_tokens("<image>", special_tokens=True)
tok_meteor.add_tokens("<tor>", special_tokens=True)
return meteor, tok_meteor