Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import warnings | |
from transformers import BitsAndBytesConfig | |
from .arch.modeling_meteor import MeteorForCausalLM | |
from .arch.tokenization_internlm2 import InternLM2Tokenizer | |
warnings.filterwarnings(action='ignore') | |
def load_meteor(link, bits): | |
# huggingface model configuration | |
huggingface_config = {} | |
# Bit quantization | |
if bits in [4, 8]: | |
huggingface_config.update(dict( | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
attn_implementation="flash_attention_2", | |
quantization_config=BitsAndBytesConfig( | |
load_in_4bit=bits == 4, | |
load_in_8bit=bits == 8, | |
llm_int8_skip_modules=["vit", "vision_proj", "output", "ffn"], | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type='nf4' | |
) | |
)) | |
else: | |
huggingface_config.update(dict( | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
attn_implementation="flash_attention_2", | |
)) | |
# loading backbone model | |
meteor = MeteorForCausalLM.from_pretrained(link, **huggingface_config) | |
# loading meteor tokenizer | |
# adding <image> and <tor> special token | |
tok_meteor = InternLM2Tokenizer.from_pretrained(link, padding_side='left') | |
tok_meteor.add_tokens("<image>", special_tokens=True) | |
tok_meteor.add_tokens("<tor>", special_tokens=True) | |
return meteor, tok_meteor |