Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import json | |
import time | |
import pickle | |
import openai | |
import re | |
from word2number import w2n | |
def create_dir(output_dir): | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
def read_csv(file): | |
data = [] | |
with open(file, 'r') as f: | |
for line in f: | |
data.append(line.strip()) | |
return data | |
def read_pandas_csv(csv_path): | |
# read a pandas csv sheet | |
import pandas as pd | |
df = pd.read_csv(csv_path) | |
return df | |
def read_json(path): | |
with open(path, 'r', encoding='utf-8') as f: | |
return json.load(f) | |
def read_jsonl(file): | |
with open(file, 'r') as f: | |
data = [json.loads(line) for line in f] | |
return data | |
def read_pickle(path): | |
with open(path, 'rb') as f: | |
return pickle.load(f) | |
def save_json(data, path): | |
with open(path, 'w') as f: | |
json.dump(data, f, indent=4) | |
def save_array_img(path, image): | |
cv2.imwrite(path, image) | |
def contains_digit(text): | |
# check if text contains a digit | |
if any(char.isdigit() for char in text): | |
return True | |
return False | |
def contains_number_word(text): | |
# check if text contains a number word | |
ignore_words = ["a", "an", "point"] | |
words = re.findall(r'\b\w+\b', text) # This regex pattern matches any word in the text | |
for word in words: | |
if word in ignore_words: | |
continue | |
try: | |
w2n.word_to_num(word) | |
return True # If the word can be converted to a number, return True | |
except ValueError: | |
continue # If the word can't be converted to a number, continue with the next word | |
# check if text contains a digit | |
if any(char.isdigit() for char in text): | |
return True | |
return False # If none of the words could be converted to a number, return False | |
def contains_quantity_word(text, special_keep_words=[]): | |
# check if text contains a quantity word | |
quantity_words = ["most", "least", "fewest" | |
"more", "less", "fewer", | |
"largest", "smallest", "greatest", | |
"larger", "smaller", "greater", | |
"highest", "lowest", "higher", "lower", | |
"increase", "decrease", | |
"minimum", "maximum", "max", "min", | |
"mean", "average", "median", | |
"total", "sum", "add", "subtract", | |
"difference", "quotient", "gap", | |
"half", "double", "twice", "triple", | |
"square", "cube", "root", | |
"approximate", "approximation", | |
"triangle", "rectangle", "circle", "square", "cube", "sphere", "cylinder", "cone", "pyramid", | |
"multiply", "divide", | |
"percentage", "percent", "ratio", "proportion", "fraction", "rate", | |
] | |
quantity_words += special_keep_words # dataset specific words | |
words = re.findall(r'\b\w+\b', text) # This regex pattern matches any word in the text | |
if any(word in quantity_words for word in words): | |
return True | |
return False # If none of the words could be converted to a number, return False | |
def is_bool_word(text): | |
if text in ["Yes", "No", "True", "False", | |
"yes", "no", "true", "false", | |
"YES", "NO", "TRUE", "FALSE"]: | |
return True | |
return False | |
def is_digit_string(text): | |
# remove ".0000" | |
text = text.strip() | |
text = re.sub(r'\.0+$', '', text) | |
try: | |
int(text) | |
return True | |
except ValueError: | |
return False | |
def is_float_string(text): | |
# text is a float string if it contains a "." and can be converted to a float | |
if "." in text: | |
try: | |
float(text) | |
return True | |
except ValueError: | |
return False | |
return False | |
def copy_image(image_path, output_image_path): | |
from shutil import copyfile | |
copyfile(image_path, output_image_path) | |
def copy_dir(src_dir, dst_dir): | |
from shutil import copytree | |
# copy the source directory to the target directory | |
copytree(src_dir, dst_dir) | |
import PIL.Image as Image | |
def get_image_size(img_path): | |
img = Image.open(img_path) | |
width, height = img.size | |
return width, height | |
def get_chat_response(promot, api_key, model="gpt-3.5-turbo", temperature=0, max_tokens=256, n=1, patience=10000000, | |
sleep_time=0): | |
messages = [ | |
{"role": "user", "content": promot}, | |
] | |
# print("I am here") | |
while patience > 0: | |
patience -= 1 | |
try: | |
response = openai.ChatCompletion.create(model=model, | |
messages=messages, | |
api_key=api_key, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
n=n) | |
if n == 1: | |
prediction = response['choices'][0]['message']['content'].strip() | |
if prediction != "" and prediction != None: | |
return prediction | |
else: | |
prediction = [choice['message']['content'].strip() for choice in response['choices']] | |
if prediction[0] != "" and prediction[0] != None: | |
return prediction | |
except Exception as e: | |
if "Rate limit" not in str(e): | |
print(e) | |
if "Please reduce the length of the messages" in str(e): | |
print("!!Reduce promot size") | |
# reduce input prompt and keep the tail | |
new_size = int(len(promot) * 0.9) | |
new_start = len(promot) - new_size | |
promot = promot[new_start:] | |
messages = [ | |
{"role": "user", "content": promot}, | |
] | |
if sleep_time > 0: | |
time.sleep(sleep_time) | |
return "" |