Spaces:
Running
Running
Upload run.py
Browse files
run.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import librosa
|
5 |
+
import numpy as np
|
6 |
+
import soundfile as sf
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
TARGET_SAMPLE_RATE = 16_000
|
10 |
+
AUDIO_SECONDS_THRESHOLD = 5
|
11 |
+
pipe = pipeline("audio-classification", model="MIT/ast-finetuned-audioset-10-10-0.4593")
|
12 |
+
prediction = [{"score": 1, "label": "recording..."}]
|
13 |
+
|
14 |
+
|
15 |
+
def normalize_waveform(waveform, datatype=np.float32): # source datatype: np.int16
|
16 |
+
waveform = waveform.astype(dtype=datatype)
|
17 |
+
waveform /= 32768.0
|
18 |
+
return waveform
|
19 |
+
|
20 |
+
|
21 |
+
def streaming_recording_fn(stream, new_chunk):
|
22 |
+
global prediction
|
23 |
+
sr, y = new_chunk
|
24 |
+
y = normalize_waveform(y)
|
25 |
+
y = librosa.resample(y, orig_sr=sr, target_sr=TARGET_SAMPLE_RATE)
|
26 |
+
if stream is not None:
|
27 |
+
if (stream.shape[-1] / TARGET_SAMPLE_RATE) >= AUDIO_SECONDS_THRESHOLD:
|
28 |
+
prediction = pipe(stream)
|
29 |
+
file_name = f'./audio/{time.strftime("%Y%m%d_%H%M%S", time.localtime())}.wav'
|
30 |
+
sf.write(file_name, stream, TARGET_SAMPLE_RATE)
|
31 |
+
print(f"SAVE AUDIO: {file_name}")
|
32 |
+
print(f">>>>>>1\t{y.shape=}, {stream.shape=}\n\t{prediction[0]=}")
|
33 |
+
stream = None
|
34 |
+
else:
|
35 |
+
stream = np.concatenate([stream, y], axis=-1)
|
36 |
+
print(f">>>>>>2\t{y.shape=}, {stream.shape=}")
|
37 |
+
else:
|
38 |
+
stream = y
|
39 |
+
print(f">>>>>>3\t{y.shape=}, {stream.shape=}")
|
40 |
+
|
41 |
+
return stream, {i['label']: i['score'] for i in prediction}
|
42 |
+
|
43 |
+
|
44 |
+
def microphone_fn(waveform):
|
45 |
+
print('-' * 120)
|
46 |
+
print(f"{waveform=}")
|
47 |
+
sr, y = waveform
|
48 |
+
y = normalize_waveform(y)
|
49 |
+
y = librosa.resample(y, orig_sr=sr, target_sr=TARGET_SAMPLE_RATE)
|
50 |
+
result = pipe(y)
|
51 |
+
file_name = f'./audio/{time.strftime("%Y%m%d_%H%M%S", time.localtime())}.wav'
|
52 |
+
sf.write(file_name, y, TARGET_SAMPLE_RATE)
|
53 |
+
return {i['label']: i['score'] for i in result}
|
54 |
+
|
55 |
+
|
56 |
+
def file_fn(waveform):
|
57 |
+
print('-' * 120)
|
58 |
+
print(f"{waveform=}")
|
59 |
+
sr, y = waveform
|
60 |
+
y = normalize_waveform(y)
|
61 |
+
y = librosa.resample(y, orig_sr=sr, target_sr=TARGET_SAMPLE_RATE)
|
62 |
+
result = pipe(y)
|
63 |
+
file_name = f'./audio/{time.strftime("%Y%m%d_%H%M%S", time.localtime())}.wav'
|
64 |
+
sf.write(file_name, y, TARGET_SAMPLE_RATE)
|
65 |
+
return {i['label']: i['score'] for i in result}
|
66 |
+
|
67 |
+
|
68 |
+
streaming_demo = gr.Interface(
|
69 |
+
fn=streaming_recording_fn,
|
70 |
+
inputs=["state", gr.Audio(sources=["microphone"], streaming=True)],
|
71 |
+
outputs=["state", "label"],
|
72 |
+
live=True,
|
73 |
+
)
|
74 |
+
|
75 |
+
microphone_demo = gr.Interface(
|
76 |
+
fn=microphone_fn,
|
77 |
+
inputs=[gr.Audio(sources=["microphone"], type="numpy")],
|
78 |
+
outputs=["label"]
|
79 |
+
)
|
80 |
+
|
81 |
+
file_demo = gr.Interface(
|
82 |
+
fn=file_fn,
|
83 |
+
inputs=[gr.Audio(sources=["upload"], type="numpy")],
|
84 |
+
outputs=["label"]
|
85 |
+
)
|
86 |
+
|
87 |
+
with gr.Blocks() as example:
|
88 |
+
inputs = [gr.Audio(sources=["upload"], type="numpy")]
|
89 |
+
output = gr.Label()
|
90 |
+
|
91 |
+
examples = [
|
92 |
+
["audio/cantina.wav"],
|
93 |
+
["audio/cat.mp3"]
|
94 |
+
]
|
95 |
+
ex = gr.Examples(examples,
|
96 |
+
fn=file_fn, inputs=inputs, outputs=output,
|
97 |
+
run_on_click=True)
|
98 |
+
|
99 |
+
with gr.Blocks() as demo:
|
100 |
+
gr.TabbedInterface([file_demo, streaming_demo, microphone_demo, example],
|
101 |
+
["Audio file", "Streaming", "Microphone", "example"])
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
|
105 |
+
demo.launch(share=True)
|